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Abstract

Predicted changes in the global climate are likely to cause large shifts in the geographic

ranges of many plant and animal species. To date, predictions of future range shifts have

relied on a variety of modeling approaches with different levels of model accuracy. Using

a common data set, we investigated the potential implications of alternative modeling

approaches for conclusions about future range shifts and extinctions. Our common data

set entailed the current ranges of 100 randomly selected mammal species found in the

western hemisphere. Using these range maps, we compared six methods for modeling

predicted future ranges. Predicted future distributions differed markedly across the

alternative modeling approaches, which in turn resulted in estimates of extinction rates

that ranged between 0% and 7%, depending on which model was used. Random forest

predictors, a model-averaging approach, consistently outperformed the other techniques

(correctly predicting 499% of current absences and 86% of current presences). We

conclude that the types of models used in a study can have dramatic effects on predicted

range shifts and extinction rates; and that model-averaging approaches appear to have

the greatest potential for predicting range shifts in the face of climate change.
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Introduction

Global temperatures have risen an average 0.6 1C over

the past century (Houghton et al., 2001). Recent studies

suggest that this climate change has caused shifts in the

geographic ranges of both plants and animals (Parmesan

& Yohe, 2003; Root et al., 2003). Given that average

global temperatures are predicted to rise between 1.4

and 5.8 1C over the next century (Houghton et al., 2001),

it is likely that many species will undergo dramatic

range shifts in the future. To anticipate the effects of

climate change, and to identify conservation strategies

that might mitigate the undesirable consequences of

climate change, it is essential that we develop models

that link the distributions of species to alternative

scenarios of climate change.

Several studies have attempted to predict future

range shifts, often with the goal of estimating climate-

induced extinction rates (Williams et al., 2003; Thomas

et al., 2004). Most predictions of future species distribu-

tions rely on what are commonly called climate-envel-

ope or niche models. Collectively, these models can be

referred to as bioclimatic models because they relate

biotic distributions to climate. At large spatial scales,

the distributions of plant and animal species are, in

part, determined by climatic factors (Lomolino et al.,

2005). Bioclimatic models attempt to relate species

current geographic distributions to a set of current

climatic factors. Relatively simple climate variables are

used to define the abiotic conditions, or ‘climate envel-

ope’ in which a species exists. Predicted future climate

variables, usually derived from a general circulation

model (GCM), are used as input for these models to

predict future distributions.

These predictive models are generally either based on

statistical techniques (e.g. Thuiller et al., 2004c) or

machine learning approaches (e.g. Peterson et al.,
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2002). There are several limitations to this correlative

approach. In general, these models do not account for

biotic interactions, evolutionary change, or dispersal

(Pearson & Dawson, 2003). Furthermore, because they

are correlative in nature, there is no guarantee that the

current relationships between a species’ distribution

and the current climate will adequately predict the

future distribution of a species. Despite these limita-

tions, these approaches currently provide the best meth-

ods for predicting climate-induced range shifts for large

numbers of species. Consequently, they have been used

extensively in a wide range of studies (Pearson et al.,

2002; Huntley et al., 2004; Thomas et al., 2004; Thuiller

et al., 2005a, b).

Unfortunately, researchers have reported large uncer-

tainties and error rates in these bioclimatic model pre-

dictions, and we have little understanding of which, if

any of the various modeling approaches is most reliable

(Thuiller, 2003; Segurado & Araújo, 2004). In this paper,

we report on a systematic comparison of all the major

approaches to predicting range shifts with a common

data set and common metrics for estimating error rates.

Our goal was to quantify the types of errors associated

with bioclimatic models and to determine whether any

approach clearly outperforms the alternatives. The

approaches we examined were: generalized linear

models (McCullagh & Nelder, 1989), classification trees

(Breiman et al., 1984), generalized additive models

(GAM, Hastie & Tibshirani, 1990), random forest

predictors (Breiman, 2001), artificial neural networks

(Ripley, 1996), and genetic algorithms for rule-set

prediction (GARP, Peterson et al., 2002).

Methods

We compared the model accuracy and the future

predictions of the six different modeling approaches

described below by applying each approach to 100

randomly selected mammal species in the western

hemisphere. All analyses were conducted on a

50 km� 50 km resolution grid consisting of 15 323 cells.

Current species distributions were based on digital

range maps (Patterson et al., 2003). We selected the

100 species at random from 1022 mammals with ranges

occupying at least 50 grid cells. We chose this threshold

to eliminate many species for which it was impossible

to build predictive models while still including species

with a wide range of geographic range sizes.

Current climate data were derived from average

monthly precipitation and temperature values from

1961 to 1990 for the land surface of the globe at 0.51

resolution (Leemans & Cramer, 1991). For that 30-year

period, we calculated mean annual temperature, aver-

age temperature of the hottest and coldest months, and

degree-days over 5 1C. We also calculated average

yearly precipitation as well as precipitation in the

hottest, coldest, wettest, and driest months.

In addition to climate data, we used land-cover data

to predict current and future species distributions. Most

models used to predict climate-induced range shifts

have used only climate data, making the assumption

that climate will act as a surrogate for land cover for

species that respond to vegetation patterns. Although

climate might act as a suitable surrogate for vegetation

in a static environment, climate-induced shifts in vege-

tation will depend in part on responses to changing CO2

levels, as well as the distribution of soil types. There-

fore, for many animal species, we should be able to

make more accurate future projections if models

include vegetation.

Current land cover was derived from both predicted

current potential vegetation and measured land cover

derived from Advanced Very High Resolution Radio-

meter (AVHRR) satellite data (Loveland et al., 1999).

Predicted current vegetation types were produced

using the Mapped Atmospheric–Plant–Soil System

(MAPSS) model (Neilson, 1995). Although measured

vegetation provides a more accurate representation

of current vegetation, we chose to use the predicted

current vegetation to best correspond with the classifi-

cation of predicted future vegetation for the years 2061–

2090. MAPSS predictions of current potential vegetation

have been shown to closely approximate other potential

vegetation classifications (Bachelet et al., 2001). We over-

laid the 44 land-cover classes of predicted potential

current vegetation from the MAPSS model with five

agriculture classes and one urban and suburban land-

cover class from the AVHRR-derived land-cover data to

produce the new 50-class land-cover data set used for

building the models.

Predicted future climate data were produced using

the Hadley Climate Centre’s HADCM2SUL model

(Johns et al., 1997) using Intergovernmental Panel on

Climate Change predicted future greenhouse gas con-

tributions (IS92a) for the years 2061–2090 (Kattenberg

et al., 1996). This model and greenhouse gas contribu-

tion scenario together generally predict larger increases

in precipitation and smaller increases in temperature

(particularly for North America) than do more recent

models. Although a wide array of more recent GCM

predictions based on alternative emissions scenarios

exist, the purpose of our study was not to draw con-

clusions about the future, but to compare the differ-

ences in predictions resulting from using different

bioclimatic modeling approaches. Using the future

climatic predictions, we calculated the same set of nine

climate variables for all 0.51 grid cells. Predicted future

land cover was produced with the MAPSS model using
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the predicted climate data for input. For the purposes of

these analyses, we assumed no change in the distribu-

tion of agriculture and urban–suburban areas. We over-

laid the predicted future potential vegetation data with

the current agriculture and urban–suburban data to

produce predicted future land cover. All data compiled

at 0.51 resolution were projected to the 50 km resolution

grid. For comparison, a 0.51 cell is approximately

3025 km2 at the equator, 2139 km2 at 451 latitude, and

514 km2 at 801 latitude.

Modeling approaches

For all six modeling approaches, we used the presence

and absence of a species as the response variable and

the set of nine continuous variables representing cur-

rent climate and one categorical variable representing

the 50 land-cover classes as predictors. All models

except the GARP models were built using the R soft-

ware package (version 1.9.1). For all 100 species, we

selected a training- and a test-data set. For the training

set, we randomly selected 80% of all species presences

and 80% of all species absences. For each species,

we then used the remaining 20% of the data for testing

the models and determining their errors in terms of

absences falsely predicted as presences (commission

error), and presences falsely predicted to be absences

(omission error).

Generalized linear models. Generalized linear models

offer a slightly more flexible modeling framework

than basic linear regression models as they allow for

the modeling of alternative distributions in the response

variable and nonconstant variance functions (Guisan

et al., 2002). We built logistic regression models

(generalized linear models with an assumed binomial

error distribution) using a combined backward- and

forward-stepwise selection process. Variable inclusion

was based on Akaike’s information criterion (Chambers

& Hastie, 1991). We modeled all linear and second-

order polynomials of the climatic predictor variables.

Because the test-data sets for 21 species contained land-

cover classes that were not found in the training sets of

those species, we chose to drop the land-cover variable

from the models for these species.

Classification tree models. Classification trees, and

regression trees, their counterpart for analyzing

continuous response variables, are nonparametric

modeling approaches (Breiman et al., 1984; Venables &

Ripley, 2002). Both techniques involve the recursive

binary partitioning of data. Each split of the data is

made using the predictor variable and the point along

that variable’s distribution that divides the data into the

two most homogeneous groups with respect to the

response variable. The result is a tree-like structure

with one root node and a number of terminal nodes.

In a classification tree, the proportional class

membership of the observations in a terminal node

form the basis for predicted probabilities. De’ath &

Fabricius (2000) provide excellent examples of the use

of tree-based models for ecological analyses. We fit

classification trees using the RPART package in R

originally designed for S-Plus (Therneau & Atkinson,

1997). Because most trees tend to over-fit the data, we

selected the optimal tree size using the modal size

suggested by fifty 10-fold cross-validations applying a

1-SE rule (De’ath & Fabricius, 2000).

GAM. GAMs are similar to generalized linear models,

but they are more flexible because they do not require a

specific response curve to be fit to the predictor

variables (Hastie & Tibshirani, 1990). Smoothing

functions allow data-driven response curves to be fit

for each predictor variable. We fit GAMs using

penalized regression splines (Wood & Augustin, 2002).

This approach takes advantage of generalized spline

smoothing (Wahba, 1990) but can be equally or less

computationally expensive than backfit GAMs. To

increase the speed of the modeling process, we

prescreened each variable by fitting a GAM model for

that variable alone. We dropped all variables for which

the fitting algorithm was unable to converge. Variable

selection for those variables included in the modeling

process was based on smoothness penalties in

conjunction with a shrinkage parameter. Variables

were effectively dropped from a model based on the

fit smoothing parameter. We used the MGCV package

in R to fit all GAM models (Wood & Augustin, 2002). As

for the generalized linear models, we did not include

the categorical land-cover variable in the models built

for the 21 species for which the test-data set contained

land-cover classes not found in the training-data set.

Random forest predictors. Random forest predictors are a

model-averaging approach based on regression or

classification trees (Breiman, 2001). Instead of building

one tree model, the random forest algorithm builds

multiple trees using randomly selected subsets of the

observations and random subsets of the predictor

variables. The predictions from the trees are then

averaged (in the case of regression trees) or tallied

using a voting system (for classification trees). We

used the R package RandomForest to build random

forest predictors. As part of the random forest

procedure, 500 classification trees were built for each

species. To build each tree, 12 258 observations were

selected at random, with replacement, from the training
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set. For each split in these trees, three predictor

variables were selected at random from the full set of

10 predictor variables as candidates for that particular

split.

Artificial neural networks. Artificial neural networks are a

machine-learning approach based on real neural

networks (Ripley, 1996). The networks are composed of

a series of interconnected nodes (neurons) which receive

and process input signals and potentially generate output

signals. A network is trained on a data set to recognize the

patterns in the data. We built artificial neural networks

using the NNET package in R which was based on the S-

Plus package NNETW (Venables & Ripley, 2002). These

feed-forward networks had one hidden layer with eight

nodes. To train the network, we used 5000 presence and

5000 absence observations selected at random, with

replacement, from the training-data set. Trial and error

determined that these 10 000 observation data sets were

most effective and efficient for training the networks. To

produce more robust predictions, we built 10 networks

for each species and averaged the model predictions

(Thuiller, 2003; Segurado & Araújo, 2004).

GARP. GARP is a machine learning-based approach

that uses a genetic algorithm (a stochastic

optimization technique) to assemble a set of rules to

define a species’ range (Stockwell & Noble, 1992). The

approach was developed expressly for predicting

species distributions. The rules used by the GARP

algorithm include logistic relationships, climate

envelopes (Nix, 1986), and simple Boolean rules. We

used the Unix version of GARP to build 500 models for

each species. All models were selected from all rule

types. GARP limits model training sets to 2500

observations. For each of the 500 models, we selected

1250 presences and 1250 absences, with replacement,

from the training-data set for the given species. For each

species, we used Cohen’s k statistic (Monserud &

Leemans, 1992), calculated using the training-data set,

to select the 10 best performing models from the set

of 500 models. We combined the binary predictions of

these 10 models to produce a predicted probability

of presence.

Model comparisons

Using the reserved test-data set, we computed four

different metrics to compare the performance of the

six different modeling approaches. The first three

of these approaches included the percentage of the

presences correctly classified, the percentage of the

absences correctly classified, and Cohen’s k. Because

all six modeling approaches produced predicted prob-

abilities, calculating these three metrics required select-

ing a threshold with which to classify predicted

presences and absences. We used receiver-operating

characteristic (ROC) curves to select the optimal thresh-

old, assuming that predicting presences correctly was

twice as important as predicting absences correctly

(Fielding & Bell, 1997). This is a conservative approach

and should generally reduce the chances of overesti-

mating future range contractions. In addition to the

three metrics listed above, we used the area under the

ROC curve (AUC) to provide an assessment of model

performance that was independent of a specific classi-

fication threshold (Fielding & Bell, 1997).

There are advantages and disadvantages to using

each of these different measures of model accuracy.

The percentage of correctly predicted presences and

absences are the simplest and most straightforward

measures. The main drawback to using these measures

is that both are required to assess the accuracy of a

model. The large extent of our study is also likely to

inflate the percentage of correctly predicted absences.

This inflation will be more pronounced for species with

small ranges. Both k and AUC are commonly used

statistics for assessing overall model accuracy taking

both omission and commission error into account. The

k statistic makes an adjustment for chance agreement

and that adjustment can produce different accuracy

estimates that depend on the structure of the data set

in question (Stehman, 1997). Because AUC assesses

accuracy independent of a given classification thresh-

old, it likely produces an overly optimistic estimate of

model accuracy when applied to test-set data. Given the

various advantages and disadvantages to using these

different measures, we chose not to use any one single

measure to assess model accuracy in our analyses.

For all four measures of accuracy, we compared

model performance across model types using Wilcox-

on’s signed-ranks tests with a Holm correction for

conducting multiple tests (Holm, 1979).

Future predictions

We used the models to predict future geographic ranges

under two alternative dispersal scenarios. First, we

assumed that a species would be able to completely

disperse into any new geographic range. For the second

scenario, we assumed that a species would be unable to

disperse from its current range. These two extreme

assumptions have been made in several recent studies

with which we wish to draw comparisons (Peterson

et al., 2002; Thomas et al., 2004). Realistic future range

shifts are likely to fall somewhere between these two

extremes.
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Results

How did alternative modeling approaches affect the

types of error and uncertainty in our analyses? The

amounts and types of error were markedly influenced

by which approach was used to predict range shifts

(Table 1). The most significant consistencies in model

performance were the over-prediction of current pre-

sences (commission error) by the neural networks and

GARP models, the under-prediction of current pre-

sences (omission error) by the classification tree models,

and the small number of errors predicted by the ran-

dom forest models. For example, classification trees

often incorrectly predicted current presences (median

of 56% correct). This is a higher rate of omission error

than produced by the other five approaches (medians of

69–86% correct presences). GARP models tended to

have higher commission error rates than the other

approaches, correctly predicting 96% of test-set ab-

sences compared with correct prediction rates of be-

tween 98% and 100% of absences for the other types of

models. The spatial patterns of both commission and

omission errors also differed across the six modeling

approaches (e.g. Fig. 1). Whereas the commission errors

of the GARP models and artificial neural networks

tended to be relatively widely distributed, the few

errors that the random forest models produced were

generally clustered tightly around the area occupied by

the species (Fig. 1).

We also found that different modeling approaches

produced dramatically different predictions of future

range shifts for many species. Not surprisingly, these

differences were heavily influenced by assumptions

regarding dispersal. On average, if one assumes no

dispersal, so that species cannot move to occupy newly

predicted portions of their range, only 19% of the

cumulative future range of a species was similarly

predicted by all six models. The percent agreement

was even lower (11%) when full dispersal (species can

fully exploit new range space that arises in the future)

was assumed. For example, for the black tufted-ear

marmoset (Callithrix penicillata), assuming unlimited

dispersal, the generalized linear model and classifica-

tion tree predicted contractions of 70% and 58% of the

current range, respectively, whereas the artificial neural

network and the GARP model, respectively, predicted

expansions of 180% and 53% of the range (Fig. 2).

These differences in model prediction translated into

different estimates of overall range contractions and

expansions as predicted by the alternative modeling

approaches (Fig. 3). When we assumed unlimited dis-

persal, classification trees predicted range contractions

of over 50% for 36% of the species in the study com-

pared with neural networks and GARP models, which

respectively predicted similar range contractions for

16% and 17% of all species. Because these models are

often used to predict extinction rates, it is worth noting

that depending on the modeling approach used, extinc-

tion rates ranged from 0% to 7% assuming unlimited

dispersal and from 6% to 14% assuming no dispersal. In

general, GARP models predicted the most drastic range

expansions including at least a tripling in range size for

19% of all species compared with classification tree

models that predicted at least a tripling in range size

for only 7% of the species.

All of the differences among models would be daunt-

ing were it not for the finding that one modeling

approach clearly performed better than all of the alter-

natives. In particular, random forest models had the

highest median performance scores across all four

measures of model accuracy (Table 1), and were con-

sistently ranked the best performing of the six model

types (Fig. 4). Random forests were the best performing

models with respect to AUC and k for 88% of species.

Table 1 Accuracy of six different modeling approaches used to model the current geographic ranges of 100 mammal species in the

western hemisphere

Model % presences correct % absences correct k AUC

GLM 77.7 (17.3), a 98.9 (1.4), a 0.68 (0.13), a 0.970 (0.017), a

TREE 55.5 (19.0), b 99.6 (0.5), b 0.63 (0.13), b, c 0.838 (0.072), b

GAM 68.9 (19.3), a 99.1 (1.4), a 0.62 (0.15), a, b 0.966 (0.022), c, d

RF 86.0 (12.1), c 99.6 (0.3), c 0.86 (0.09), d 0.995 (0.003), e

ANN 75.6 (12.5), a 98.2 (2.1), d 0.58 (0.13), c, e 0.968 (0.017), a, c

GARP 85.0 (6.2), c 95.9 (2.7), e 0.53 (0.17), e 0.962 (0.023), d

Accuracy was assessed using a reserved test-data set composed of a randomly selected 20% of the presences and 20% of the absences

for each species. Values reported are the medians and one half of the interquartile range of the accuracy of the model predictions for

100 species. Values with the same letters were not significantly different (P40.05).

GLM, generalized linear model; TREE, classification tree; GAM, generalized additive model; RF, random forest; ANN, artificial

neural network; GARP, genetic algorithm for rule-set prediction; AUC, area under the receiver-operating characteristic curve.

1572 J . J . L A W L E R et al.

r 2006 The Authors
Journal compilation r 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568–1584



The superiority of the random forest models as mea-

sured by AUC, k, and the percentage of correctly

predicted presences was independent of species range

size. Range size did, however, affect the accuracy of the

models and the ranking of some of the approaches. For

all approaches, the percentage of correctly predicted

presences increased with initial range size (Fig. 5),

whereas the percentage of correctly predicted absences

decreased with initial range size (Fig. 6). Range size had

little effect on the ranking of the modeling approaches

with respect to the percentage of correctly predicted

absences (Table 2) but more substantially affected the

ranking of the approaches with respect to correctly

predicted presences (Table 3). In particular, GARP mod-

els were the best at predicting presences for the species

with the smallest ranges. This reduced omission error

came at a cost, however, because GARP models had the

highest commission error rates.

We noted some distinct differences in the models

built for the 21 species for which land-cover data were

not used in the modeling process. For all but the

generalized linear models and random forest models,

the predictions for these species had higher commission

error rates and lower omission error rates than the other

79 species for which land-cover data were used.

Discussion

Differences in bioclimatic modeling approaches

There are several different approaches to predicting

changes in species distributions as a result of climate

change (Iverson & Prasad, 1998; Shafer et al., 2001;

Pearson et al., 2002; Araújo et al., 2004; Meynecke,

2004; Thomas et al., 2004). With few exceptions, pre-

vious studies have found very little consistency in

the performance of these alternative approaches (Moisen

& Frescino, 2002; Robertson et al., 2003; Thuiller, 2003;

Segurado & Araújo, 2004). We have found similar incon-

sistency among models. Others have demonstrated that

certain modeling approaches work differently for groups

of species that demonstrate qualitatively different rela-

tionships with their environments (Segurado & Araújo,

2004). The six modeling techniques that we applied in

Correctly predicted absence

Incorrectly predicted absence (commission error)

Correctly predicted presence

Incorrectly predicted presence (omission error)

GLM

RF

TREE

ANN

GAM

GARP

Fig. 1 Maps of the current range of the black tufted-ear marmoset (Callithrix penicillata) as predicted by six alternative modeling

approaches. See Table 1 for an explanation of model abbreviations.
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this study make different assumptions about the relation-

ships between species and their environments (Guisan &

Zimmermann, 2000). For example, generalized linear

models assume a given response curve that defines the

relationship between the probability of presence and

various environmental gradients. These models will gen-

erally work well for species with relatively simple rela-

tionships to environmental gradients. The other five

techniques that we tested are more flexible with respect

to the complexity of the relationships that they can

model. For example, GAMs allow for complex relation-

ships with individual variables to be modeled. They are

not, however, as adept at modeling complex interactions

between variables as are classification tree models or

random forests. Artificial neural networks and GARP

models, the two machine-learning-based approaches

tested here, are in part an attempt to model both complex

relationships with individual variables and complex in-

teractions among those variables.

Inconsistencies in bioclimatic model predictions

The inconsistency among bioclimatic models has led

some to suggest innovative methods for addressing

model uncertainty that involve finding consensus

among different models and then selecting the model

that best represents these commonalities (Thuiller, 2003;

Thuiller et al., 2004b). Another approach to reducing

uncertainty is to ask whether some models might

simply perform better than others, and hence we need

not consider all of their predictions. Pursuing that

strategy, our study compares essentially the full suite

of correlative bioclimatic modeling approaches with a

common data set, several metrics of model perfor-

mance, and alternative assumptions about dispersal.

The lessons are clear. First, random forest predictors,

which averaged the predictions of hundreds of models,

were consistently the best performers, and for the data

we examined, performed remarkably well. They

achieved error rates of less than 15% for presences

and less than 1% for absences. We are aware of only

one other study that has compared the performance of

random forest predictors to other models for use as

climate-envelope models. Prasad et al. (2006) found that

random forest models and bagging (another tree-based

model-averaging approach) consistently produced bet-

ter predictions than multivariate adaptive regression

splines and regression trees for predicting the distribu-

Absent

Stable

Expansion

Contraction

GLM TREE GAM

RF ANN GARP

Fig. 2 Maps of the predicted future range of the black tufted-ear marmoset (Callithrix penicillata) as predicted by six alternative

modeling approaches. See Table 1 for an explanation of model abbreviations.

1574 J . J . L A W L E R et al.

r 2006 The Authors
Journal compilation r 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568–1584



tions of four tree species. The performance of each of the

other five modeling approaches tested here, but not by

Prasad et al., is generally comparable with the perfor-

mance of models of the same type tested elsewhere

(Thuiller et al., 2003; Pearson et al., 2004; Segurado &

Araújo, 2004).

Our results raise the obvious question of why random

forest models work so remarkably well. The strength of

this approach likely lies in the power derived from

averaging hundreds of different models (Breiman,

2001). The individual models are built with randomly

selected subsets of the data and randomly selected

Fig. 3 Climate-induced range contractions and expansions for

100 species as predicted by six different modeling approaches.

We report the percentage of species predicted to experience each

of three levels of range contraction when (a) individuals are

assumed to be able to disperse completely into their future range

and (b) when individuals cannot disperse out of their current

range. We also report the percentage of species predicted to

experience three levels of range expansion (c).
Fig. 4 Ranking of the performance of six different modeling

approaches for predicting the current distribution of 100 mam-

mal species. Performance was assessed as (a) the percentage of

correctly predicted presences, (b) the percentage of correctly

predicted absences, (c) the k statistic, and (d) the area under

the receiver-operating characteristic curve (AUC). Each set of

box and whiskers represents the median, first and third quar-

tiles, and the maximum and minimum values. See Table 1 for an

explanation of model abbreviations.
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subsets of the predictor variables. Although we aver-

aged 10 artificial neural networks and 10 GARP models

to produce predictions for each species, the model

averaging accomplished by random forest predictors

is much more comprehensive. Although it is possible

that model averaging applied similarly to techniques

other than the classification trees on which random

forests are based would produce models of comparable

accuracy, the tree-based models themselves provide

added advantages over other modeling approaches. In

addition to providing a method for modeling complex

interactions without having to specify them a priori,

tree-based models allow the relationships between the

response and the predictors to vary over the domain of

the study. This is particularly advantageous for model-

ing data that cover large and diverse geographic areas.

The second lesson to be taken from our study is that

the different modeling approaches tend to be relatively

consistent in the types of errors they make. For example,

classification trees produced the most omission errors

whereas GARP models had the highest commission

error rates. These errors, in turn, lead to different

predicted range shifts, extinction rates, and changes in

species composition at specific sites. The large number

of commission errors produced by the GARP models

may, in part, reflect a difference in philosophy inherent

in the design and execution of GARP. The model is

generally used with presence-only data (e.g. Peterson

et al., 2002). Without true absences, it is impossible to

fully assess model accuracy; one cannot determine

whether predicted presences that do not coincide with

the presence data represent commission error or un-

sampled presences. Indeed, when GARP is applied,

many of the predicted presences that do not correspond

with presence data points are generally assumed to

either represent unrecorded presences or the unrealized

portions of a species’ fundamental niche (Anderson

et al., 2003). While this assumption may be true, our

results indicate that it may lead to an overly optimistic

view of model performance. In our study, because we

used both presence and absence data, we were able

to identify commission error and thus fully test the

GARP models.

It is important to recognize that no correlative mod-

eling approach can accurately model the fundamental

niche of a species. Whether using presence only data or

data on presences and absences, the best one can do

with a correlative approach is to approximate a species’

Fig. 5 Relationships between model accuracy (as measured by the percentage of correctly predicted presences) and species range size

for 100 mammal species using six different modeling approaches. See Table 1 for an explanation of model abbreviations.
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current realized niche and hope that the modeled

relationships hold in the future. Although there is no

assurance that the model that most accurately predicts

the current distribution of a species will always produce

the most accurate future predictions, it is likely that

minimizing known errors in the current predictions will

reduce the total amount of error in projections of future

or past ranges.

In addition to being prone to committing specific

types of errors, different modeling approaches may also

be more or less sensitive to various attributes of the data

used in the modeling process. For example, some

modeling approaches may be more robust to changes

in spatial resolution (Thuiller et al., 2003) and some may

be more robust to the changes in spatial extent (Thuiller

et al., 2004c). Some modeling approaches may be more

sensitive to the ratio of presences to absences in the data

set (Fielding & Haworth, 1995). Finally, some modeling

approaches may be more or less sensitive to the type of

predictor variables used in the modeling process (Thuil-

ler et al., 2004a). Determining the degree to which these

attributes of data sets differentially affect modeling

approaches will require a concerted research effort in

the future.

Fig. 6 Relationships between model accuracy (as measured by the percentage of correctly predicted absences) and species range size

for 100 mammal species using six different modeling approaches. See Table 1 for an explanation.

Table 2 Median rankings of the accuracy of six different

modeling approaches for predicting current absences of 100

mammal species

Median model rankings (for correctly predicted absences)

Species with

ranges of

50–200 cells

Species with

ranges of

201–1000 cells

Species with

ranges 41000

cells

RF RF RF

TREE TREE TREE

GLM GLM GAM

GAM GAM GLM

ANN ANN ANN

GARP GARP GARP

Species have been divided into three groups based on current

range size. The three columns in the table represent model

rankings for (from left to right) 39 species with ranges con-

sisting of 50–200 grid cells, 31 species with ranges of 201–1000

grid cells, and 30 species with ranges of 41000 grid cells. The

highest ranked models are at the tops of the columns and

models tied in rank are linked with a vertical line. See Table 1

for an explanation of model abbreviations.
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The last lesson we can take from our study is that the

models differed greatly in the extent to which they

predicted shrinking ranges vs. expanding ranges in

the face of climate change. For example, when we

assumed unlimited dispersal, classification tree models

predicted extinctions for 7% of the species compared

with GARP models, which predicted no extinctions.

Similarly, Thuiller et al. (2004b) demonstrated potential

differences in predicted extinction rates across model-

ing approaches ranging from less than 1% to roughly

5% over a 50-year period.

Limitations and advances in bioclimatic modeling

Although bioclimatic models are a useful tool for in-

vestigating the effects of climate change on biodiversity

at large spatial scales, they are not without their limita-

tions. Our analyses address one aspect of the uncer-

tainty associated with current bioclimatic models and

highlight a tool for reducing this uncertainty. There are,

however, several other points at which uncertainty

enters the bioclimatic-modeling process. The limitations

of bioclimatic models have been thoroughly reviewed

by Pearson & Dawson (2003). Here, we discuss four of

these limitations.

First, most correlative approaches do not directly

model biotic interactions. These interactions can have

strong influences on species’ responses to climate

change (Davis et al., 1998). As a first step to addressing

biotic interactions, we included vegetation in our mod-

els as a proxy for animal–habitat interactions. Although

simple vegetation associations cannot capture all biotic

interactions, they likely represent some of the most

basic, resource use, predator–prey, and competitor in-

teractions. Models that assume climate variables will

serve as a proxy for vegetation, will fail to capture the

effects of changes in atmospheric CO2 concentrations on

animal habitat. Including vegetation in bioclimatic

models for animals is only a first step to addressing

biotic interactions. Explicitly modeling interspecific in-

teractions will involve linking bioclimatic models for

multiple species or further integrating mechanistic and

correlative models.

The second limitation of correlative models is that

they do not address dispersal. Assuming that organ-

isms can fully disperse into their projected future range

or that they will be limited to that portion of their

projected future range that overlaps their current range

is overly simplistic. One solution is to link bioclimatic

model projections with simulated dispersal patterns

(e.g. Peterson et al., 2002). Such integrated modeling

approaches will provide more accurate predictions of

future distributions.

The third limitation of bioclimatic models is that they

cannot account for evolutionary change. For species

with rapid adaptation rates, evolutionary changes

may influence the impacts of climate change on species

distributions (Hoffmann & Parsons, 1991; Thomas et al.,

2001). However, for many species, evolutionary change

will likely lag far behind climate change (Peters &

Darling, 1985; Etterson & Shaw, 2001). With respect to

evolutionary change, bioclimatic approaches will most

accurately model species with poor dispersal capabil-

ities and long generation times (Pearson & Dawson,

2003).

Finally, the fourth limitation of bioclimatic ap-

proaches is that the models are exceedingly difficult to

validate. Ideally, models are validated with data that are

completely independent of the data used to build them.

However, many models are evaluated with the same

data used in model building (e.g. Huntley et al., 2004).

In these cases, there is a complete lack of independence

of the data sets, which prevents any assessment of

whether or not the models over-fit the data. Another

common approach is the one taken in this and many

other studies (Iverson & Prasad, 1998; Pearson et al.,

2002; Thuiller, 2003) in which data are split into two

sets, one of which is used to build the models and the

other of which is reserved for model validation.

Although this approach provides some independence

of the model building and validating data sets, the

reserved data are not completely independent because

of spatial autocorrelation (Koenig, 1999). To obtain a

completely independent data set, one must find data

Table 3 Median rankings of the accuracy of six different

modeling approaches for predicting current presences of 100

mammal species

Median model rankings (for correctly predicted presences)

Species with

ranges of

50–200 cells

Species with

ranges of

201–1000 cells

Species with

ranges 41000

cells

GARP RF RF

RF GARP GLM

GLM GLM GAM

ANN GAM ANN

GAM ANN GARP

TREE TREE TREE

Species have been divided into three groups based on current

range size. The three columns in the table represent model

rankings for (from left to right) 39 species with ranges con-

sisting of 50–200 grid cells, 31 species with ranges of 201–1000

grid cells, and 30 species with ranges of 41000 grid cells. The

highest ranked models are at the tops of the columns and

models tied in rank are linked with a vertical line. See Table 1

for an explanation of model abbreviations.
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from a geographically distinct region (Fielding &

Haworth, 1995) or from a historical period (Araújo

et al., 2005) – although the latter may still be both

spatially and temporally autocorrelated.

For continental analyses, truly independent data sel-

dom exist. Many species that occur on multiple con-

tinents do so because they are invasive exotics and,

thus, may not be at equilibrium with their new envir-

onments. Historic data for most species do not exist.

When they do, they often provide few data points for

model validation. Fortunately, there is evidence that

bioclimatic model validation estimates based on semi-

independent reserved validation data sets may approx-

imate estimates based on more independent data sets.

Araújo et al. (2005) found that model performance

estimates based on historic bird ranges were similar to

performance estimates based on a reserved data set.

Despite these limitations, we should not underesti-

mate the role of bioclimatic models in assessing the

potential effects of climate change. Bioclimatic model

predictions should be seen as a first approximation of

the potential effects of climate change on biota at large

spatial scales and not as accurate predictions of future

distributions of individual species (Pearson & Dawson,

2003). Although dynamic global vegetation models

(DGVMs) currently provide a process-based alternative

for projecting climate-induced shifts in vegetation types

or biomes (Bachelet et al., 2001; Sitch et al., 2003),

building purely mechanistic models for large numbers

of individual species would be a massive undertaking

because of the lack of knowledge of species’ life his-

tories and physiologies and the amount of work each

individual model would require. Indeed, mechanistic

models come with their own uncertainties as DGVM-

comparison studies demonstrate (Cramer et al., 2001;

Bachelet et al., 2003). Our results highlight one specific

modeling approach that will reduce the uncertainty in

bioclimatic-model predictions. Reducing the uncer-

tainty associated with biotic interactions, dispersal,

and evolutionary change will involve even more crea-

tive approaches that combine mechanistic and correla-

tive models.

Conclusions

The uncertainties in future range predictions that can be

attributed to the errors in the bioclimatic models cur-

rently in use are likely to be greater than the uncertain-

ties of actually predicting the underlying climate change

(i.e. the differences among climate models and emis-

sions scenarios) (Thuiller, 2004). This means that unless

we can produce more accurate bioclimatic models, they

cannot really be used to compare the consequences of

different greenhouse gas emissions scenarios. Looking

forward, it appears that random forest models or other

model-averaging approaches may yield robust predic-

tions of range shifts in the face of climate change. It will

still be difficult to translate these predictions into ex-

pected extinctions and species turn-over rates because

actual range shifts will depend on dispersal, evolution-

ary flexibility, and species interactions. Nonetheless, for

the sake of adaptive management and conservation

planning, random forest models provide a useful and

reliable tool. By minimizing the uncertainty in biocli-

matic models, studies of climate-induced range shifts

can concentrate on elucidating the effects of the more

important uncertainties in climate-change predictions.
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