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Abstract

Predicted changes in the global climate are likely to cause large shifts in the geographic
ranges of many plant and animal species. To date, predictions of future range shifts have
relied on a variety of modeling approaches with different levels of model accuracy. Using
a common data set, we investigated the potential implications of alternative modeling
approaches for conclusions about future range shifts and extinctions. Our common data
set entailed the current ranges of 100 randomly selected mammal species found in the
western hemisphere. Using these range maps, we compared six methods for modeling
predicted future ranges. Predicted future distributions differed markedly across the
alternative modeling approaches, which in turn resulted in estimates of extinction rates
that ranged between 0% and 7%, depending on which model was used. Random forest
predictors, a model-averaging approach, consistently outperformed the other techniques
(correctly predicting >99% of current absences and 86% of current presences). We
conclude that the types of models used in a study can have dramatic effects on predicted
range shifts and extinction rates; and that model-averaging approaches appear to have
the greatest potential for predicting range shifts in the face of climate change.
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Introduction

Global temperatures have risen an average 0.6 °C over
the past century (Houghton et al., 2001). Recent studies
suggest that this climate change has caused shifts in the
geographic ranges of both plants and animals (Parmesan
& Yohe, 2003; Root et al., 2003). Given that average
global temperatures are predicted to rise between 1.4
and 5.8 °C over the next century (Houghton et al., 2001),
it is likely that many species will undergo dramatic
range shifts in the future. To anticipate the effects of
climate change, and to identify conservation strategies
that might mitigate the undesirable consequences of
climate change, it is essential that we develop models
that link the distributions of species to alternative
scenarios of climate change.
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Several studies have attempted to predict future
range shifts, often with the goal of estimating climate-
induced extinction rates (Williams et al., 2003; Thomas
et al., 2004). Most predictions of future species distribu-
tions rely on what are commonly called climate-envel-
ope or niche models. Collectively, these models can be
referred to as bioclimatic models because they relate
biotic distributions to climate. At large spatial scales,
the distributions of plant and animal species are, in
part, determined by climatic factors (Lomolino et al.,
2005). Bioclimatic models attempt to relate species
current geographic distributions to a set of current
climatic factors. Relatively simple climate variables are
used to define the abiotic conditions, or ‘climate envel-
ope’ in which a species exists. Predicted future climate
variables, usually derived from a general circulation
model (GCM), are used as input for these models to
predict future distributions.

These predictive models are generally either based on
statistical techniques (e.g. Thuiller et al., 2004c) or
machine learning approaches (e.g. Peterson et al.,
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2002). There are several limitations to this correlative
approach. In general, these models do not account for
biotic interactions, evolutionary change, or dispersal
(Pearson & Dawson, 2003). Furthermore, because they
are correlative in nature, there is no guarantee that the
current relationships between a species’ distribution
and the current climate will adequately predict the
future distribution of a species. Despite these limita-
tions, these approaches currently provide the best meth-
ods for predicting climate-induced range shifts for large
numbers of species. Consequently, they have been used
extensively in a wide range of studies (Pearson et al.,
2002; Huntley et al., 2004; Thomas et al., 2004; Thuiller
et al., 2005a,b).

Unfortunately, researchers have reported large uncer-
tainties and error rates in these bioclimatic model pre-
dictions, and we have little understanding of which, if
any of the various modeling approaches is most reliable
(Thuiller, 2003; Segurado & Aratjo, 2004). In this paper,
we report on a systematic comparison of all the major
approaches to predicting range shifts with a common
data set and common metrics for estimating error rates.
Our goal was to quantify the types of errors associated
with bioclimatic models and to determine whether any
approach clearly outperforms the alternatives. The
approaches we examined were: generalized linear
models (McCullagh & Nelder, 1989), classification trees
(Breiman et al., 1984), generalized additive models
(GAM, Hastie & Tibshirani, 1990), random forest
predictors (Breiman, 2001), artificial neural networks
(Ripley, 1996), and genetic algorithms for rule-set
prediction (GARP, Peterson et al., 2002).

Methods

We compared the model accuracy and the future
predictions of the six different modeling approaches
described below by applying each approach to 100
randomly selected mammal species in the western
hemisphere. All analyses were conducted on a
50 km x 50 km resolution grid consisting of 15323 cells.
Current species distributions were based on digital
range maps (Patterson et al., 2003). We selected the
100 species at random from 1022 mammals with ranges
occupying at least 50 grid cells. We chose this threshold
to eliminate many species for which it was impossible
to build predictive models while still including species
with a wide range of geographic range sizes.

Current climate data were derived from average
monthly precipitation and temperature values from
1961 to 1990 for the land surface of the globe at 0.5°
resolution (Leemans & Cramer, 1991). For that 30-year
period, we calculated mean annual temperature, aver-
age temperature of the hottest and coldest months, and
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degree-days over 5°C. We also calculated average
yearly precipitation as well as precipitation in the
hottest, coldest, wettest, and driest months.

In addition to climate data, we used land-cover data
to predict current and future species distributions. Most
models used to predict climate-induced range shifts
have used only climate data, making the assumption
that climate will act as a surrogate for land cover for
species that respond to vegetation patterns. Although
climate might act as a suitable surrogate for vegetation
in a static environment, climate-induced shifts in vege-
tation will depend in part on responses to changing CO,
levels, as well as the distribution of soil types. There-
fore, for many animal species, we should be able to
make more accurate future projections if models
include vegetation.

Current land cover was derived from both predicted
current potential vegetation and measured land cover
derived from Advanced Very High Resolution Radio-
meter (AVHRR) satellite data (Loveland et al., 1999).
Predicted current vegetation types were produced
using the Mapped Atmospheric-Plant-Soil System
(MAPSS) model (Neilson, 1995). Although measured
vegetation provides a more accurate representation
of current vegetation, we chose to use the predicted
current vegetation to best correspond with the classifi-
cation of predicted future vegetation for the years 2061-
2090. MAPSS predictions of current potential vegetation
have been shown to closely approximate other potential
vegetation classifications (Bachelet ef al., 2001). We over-
laid the 44 land-cover classes of predicted potential
current vegetation from the MAPSS model with five
agriculture classes and one urban and suburban land-
cover class from the AVHRR-derived land-cover data to
produce the new 50-class land-cover data set used for
building the models.

Predicted future climate data were produced using
the Hadley Climate Centre’s HADCM2SUL model
(Johns et al., 1997) using Intergovernmental Panel on
Climate Change predicted future greenhouse gas con-
tributions (IS92a) for the years 2061-2090 (Kattenberg
et al., 1996). This model and greenhouse gas contribu-
tion scenario together generally predict larger increases
in precipitation and smaller increases in temperature
(particularly for North America) than do more recent
models. Although a wide array of more recent GCM
predictions based on alternative emissions scenarios
exist, the purpose of our study was not to draw con-
clusions about the future, but to compare the differ-
ences in predictions resulting from using different
bioclimatic modeling approaches. Using the future
climatic predictions, we calculated the same set of nine
climate variables for all 0.5° grid cells. Predicted future
land cover was produced with the MAPSS model using
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the predicted climate data for input. For the purposes of
these analyses, we assumed no change in the distribu-
tion of agriculture and urban-suburban areas. We over-
laid the predicted future potential vegetation data with
the current agriculture and urban—suburban data to
produce predicted future land cover. All data compiled
at 0.5° resolution were projected to the 50 km resolution
grid. For comparison, a 0.5° cell is approximately
3025km? at the equator, 2139 km? at 45° latitude, and
514km? at 80° latitude.

Modeling approaches

For all six modeling approaches, we used the presence
and absence of a species as the response variable and
the set of nine continuous variables representing cur-
rent climate and one categorical variable representing
the 50 land-cover classes as predictors. All models
except the GARP models were built using the R soft-
ware package (version 1.9.1). For all 100 species, we
selected a training- and a test-data set. For the training
set, we randomly selected 80% of all species presences
and 80% of all species absences. For each species,
we then used the remaining 20% of the data for testing
the models and determining their errors in terms of
absences falsely predicted as presences (commission
error), and presences falsely predicted to be absences
(omission error).

Generalized linear models. Generalized linear models
offer a slightly more flexible modeling framework
than basic linear regression models as they allow for
the modeling of alternative distributions in the response
variable and nonconstant variance functions (Guisan
et al., 2002). We built logistic regression models
(generalized linear models with an assumed binomial
error distribution) using a combined backward- and
forward-stepwise selection process. Variable inclusion
was based on Akaike’s information criterion (Chambers
& Hastie, 1991). We modeled all linear and second-
order polynomials of the climatic predictor variables.
Because the test-data sets for 21 species contained land-
cover classes that were not found in the training sets of
those species, we chose to drop the land-cover variable
from the models for these species.

Classification tree models. Classification trees, and
regression trees, their counterpart for analyzing
continuous response variables, are nonparametric
modeling approaches (Breiman et al., 1984; Venables &
Ripley, 2002). Both techniques involve the recursive
binary partitioning of data. Each split of the data is
made using the predictor variable and the point along
that variable’s distribution that divides the data into the

two most homogeneous groups with respect to the
response variable. The result is a tree-like structure
with one root node and a number of terminal nodes.
In a classification tree, the proportional class
membership of the observations in a terminal node
form the basis for predicted probabilities. De’ath &
Fabricius (2000) provide excellent examples of the use
of tree-based models for ecological analyses. We fit
classification trees using the RPART package in R
originally designed for S-Plus (Therneau & Atkinson,
1997). Because most trees tend to over-fit the data, we
selected the optimal tree size using the modal size
suggested by fifty 10-fold cross-validations applying a
1-SE rule (De’ath & Fabricius, 2000).

GAM. GAMs are similar to generalized linear models,
but they are more flexible because they do not require a
specific response curve to be fit to the predictor
variables (Hastie & Tibshirani, 1990). Smoothing
functions allow data-driven response curves to be fit
for each predictor variable. We fit GAMs using
penalized regression splines (Wood & Augustin, 2002).
This approach takes advantage of generalized spline
smoothing (Wahba, 1990) but can be equally or less
computationally expensive than backfit GAMs. To
increase the speed of the modeling process, we
prescreened each variable by fitting a GAM model for
that variable alone. We dropped all variables for which
the fitting algorithm was unable to converge. Variable
selection for those variables included in the modeling
process was based on smoothness penalties in
conjunction with a shrinkage parameter. Variables
were effectively dropped from a model based on the
fit smoothing parameter. We used the MGCV package
in R to fit all GAM models (Wood & Augustin, 2002). As
for the generalized linear models, we did not include
the categorical land-cover variable in the models built
for the 21 species for which the test-data set contained
land-cover classes not found in the training-data set.

Random forest predictors. Random forest predictors are a
model-averaging approach based on regression or
classification trees (Breiman, 2001). Instead of building
one tree model, the random forest algorithm builds
multiple trees using randomly selected subsets of the
observations and random subsets of the predictor
variables. The predictions from the trees are then
averaged (in the case of regression trees) or tallied
using a voting system (for classification trees). We
used the R package RandomForest to build random
forest predictors. As part of the random forest
procedure, 500 classification trees were built for each
species. To build each tree, 12258 observations were
selected at random, with replacement, from the training
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set. For each split in these trees, three predictor
variables were selected at random from the full set of
10 predictor variables as candidates for that particular
split.

Artificial neural networks. Artificial neural networks are a
machine-learning approach based on real neural
networks (Ripley, 1996). The networks are composed of
a series of interconnected nodes (neurons) which receive
and process input signals and potentially generate output
signals. A network is trained on a data set to recognize the
patterns in the data. We built artificial neural networks
using the NNET package in R which was based on the S-
Plus package NNETW (Venables & Ripley, 2002). These
feed-forward networks had one hidden layer with eight
nodes. To train the network, we used 5000 presence and
5000 absence observations selected at random, with
replacement, from the training-data set. Trial and error
determined that these 10000 observation data sets were
most effective and efficient for training the networks. To
produce more robust predictions, we built 10 networks
for each species and averaged the model predictions
(Thuiller, 2003; Segurado & Aratjo, 2004).

GARP. GARP is a machine learning-based approach
that wuses a genetic algorithm (a stochastic
optimization technique) to assemble a set of rules to
define a species’ range (Stockwell & Noble, 1992). The
approach was developed expressly for predicting
species distributions. The rules used by the GARP
algorithm include logistic relationships, climate
envelopes (Nix, 1986), and simple Boolean rules. We
used the Unix version of GARP to build 500 models for
each species. All models were selected from all rule
types. GARP limits model training sets to 2500
observations. For each of the 500 models, we selected
1250 presences and 1250 absences, with replacement,
from the training-data set for the given species. For each
species, we used Cohen’s k statistic (Monserud &
Leemans, 1992), calculated using the training-data set,
to select the 10 best performing models from the set
of 500 models. We combined the binary predictions of
these 10 models to produce a predicted probability
of presence.

Model comparisons

Using the reserved test-data set, we computed four
different metrics to compare the performance of the
six different modeling approaches. The first three
of these approaches included the percentage of the
presences correctly classified, the percentage of the
absences correctly classified, and Cohen’s k. Because
all six modeling approaches produced predicted prob-
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abilities, calculating these three metrics required select-
ing a threshold with which to classify predicted
presences and absences. We used receiver-operating
characteristic (ROC) curves to select the optimal thresh-
old, assuming that predicting presences correctly was
twice as important as predicting absences correctly
(Fielding & Bell, 1997). This is a conservative approach
and should generally reduce the chances of overesti-
mating future range contractions. In addition to the
three metrics listed above, we used the area under the
ROC curve (AUC) to provide an assessment of model
performance that was independent of a specific classi-
fication threshold (Fielding & Bell, 1997).

There are advantages and disadvantages to using
each of these different measures of model accuracy.
The percentage of correctly predicted presences and
absences are the simplest and most straightforward
measures. The main drawback to using these measures
is that both are required to assess the accuracy of a
model. The large extent of our study is also likely to
inflate the percentage of correctly predicted absences.
This inflation will be more pronounced for species with
small ranges. Both ¥ and AUC are commonly used
statistics for assessing overall model accuracy taking
both omission and commission error into account. The
Kk statistic makes an adjustment for chance agreement
and that adjustment can produce different accuracy
estimates that depend on the structure of the data set
in question (Stehman, 1997). Because AUC assesses
accuracy independent of a given classification thresh-
old, it likely produces an overly optimistic estimate of
model accuracy when applied to test-set data. Given the
various advantages and disadvantages to using these
different measures, we chose not to use any one single
measure to assess model accuracy in our analyses.

For all four measures of accuracy, we compared
model performance across model types using Wilcox-
on’s signed-ranks tests with a Holm correction for
conducting multiple tests (Holm, 1979).

Future predictions

We used the models to predict future geographic ranges
under two alternative dispersal scenarios. First, we
assumed that a species would be able to completely
disperse into any new geographic range. For the second
scenario, we assumed that a species would be unable to
disperse from its current range. These two extreme
assumptions have been made in several recent studies
with which we wish to draw comparisons (Peterson
et al., 2002; Thomas et al., 2004). Realistic future range
shifts are likely to fall somewhere between these two
extremes.
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Table 1 Accuracy of six different modeling approaches used to model the current geographic ranges of 100 mammal species in the

western hemisphere

Model % presences correct % absences correct K AUC

GLM 77.7 (17.3), a 98.9 (1.4), a 0.68 (0.13), a 0.970 (0.017), a
TREE 55.5 (19.0), b 99.6 (0.5), b 0.63 (0.13), b, c 0.838 (0.072), b
GAM 68.9 (19.3), a 99.1(14), a 0.62 (0.15), a, b 0.966 (0.022), ¢, d
RF 86.0 (12.1), ¢ 99.6 (0.3), c 0.86 (0.09), d 0.995 (0.003), e
ANN 75.6 (12.5), a 982 (2.1),d 0.58 (0.13), ¢, e 0.968 (0.017), a, ¢
GARP 85.0 (6.2), ¢ 95.9 (2.7), e 0.53 (0.17), e 0.962 (0.023), d

Accuracy was assessed using a reserved test-data set composed of a randomly selected 20% of the presences and 20% of the absences
for each species. Values reported are the medians and one half of the interquartile range of the accuracy of the model predictions for
100 species. Values with the same letters were not significantly different (P> 0.05).

GLM, generalized linear model; TREE, classification tree; GAM, generalized additive model; RF, random forest; ANN, artificial
neural network; GARP, genetic algorithm for rule-set prediction; AUC, area under the receiver-operating characteristic curve.

Results

How did alternative modeling approaches affect the
types of error and uncertainty in our analyses? The
amounts and types of error were markedly influenced
by which approach was used to predict range shifts
(Table 1). The most significant consistencies in model
performance were the over-prediction of current pre-
sences (commission error) by the neural networks and
GARP models, the under-prediction of current pre-
sences (omission error) by the classification tree models,
and the small number of errors predicted by the ran-
dom forest models. For example, classification trees
often incorrectly predicted current presences (median
of 56% correct). This is a higher rate of omission error
than produced by the other five approaches (medians of
69-86% correct presences). GARP models tended to
have higher commission error rates than the other
approaches, correctly predicting 96% of test-set ab-
sences compared with correct prediction rates of be-
tween 98% and 100% of absences for the other types of
models. The spatial patterns of both commission and
omission errors also differed across the six modeling
approaches (e.g. Fig. 1). Whereas the commission errors
of the GARP models and artificial neural networks
tended to be relatively widely distributed, the few
errors that the random forest models produced were
generally clustered tightly around the area occupied by
the species (Fig. 1).

We also found that different modeling approaches
produced dramatically different predictions of future
range shifts for many species. Not surprisingly, these
differences were heavily influenced by assumptions
regarding dispersal. On average, if one assumes no
dispersal, so that species cannot move to occupy newly
predicted portions of their range, only 19% of the
cumulative future range of a species was similarly

predicted by all six models. The percent agreement
was even lower (11%) when full dispersal (species can
fully exploit new range space that arises in the future)
was assumed. For example, for the black tufted-ear
marmoset (Callithrix penicillata), assuming unlimited
dispersal, the generalized linear model and classifica-
tion tree predicted contractions of 70% and 58% of the
current range, respectively, whereas the artificial neural
network and the GARP model, respectively, predicted
expansions of 180% and 53% of the range (Fig. 2).

These differences in model prediction translated into
different estimates of overall range contractions and
expansions as predicted by the alternative modeling
approaches (Fig. 3). When we assumed unlimited dis-
persal, classification trees predicted range contractions
of over 50% for 36% of the species in the study com-
pared with neural networks and GARP models, which
respectively predicted similar range contractions for
16% and 17% of all species. Because these models are
often used to predict extinction rates, it is worth noting
that depending on the modeling approach used, extinc-
tion rates ranged from 0% to 7% assuming unlimited
dispersal and from 6% to 14% assuming no dispersal. In
general, GARP models predicted the most drastic range
expansions including at least a tripling in range size for
19% of all species compared with classification tree
models that predicted at least a tripling in range size
for only 7% of the species.

All of the differences among models would be daunt-
ing were it not for the finding that one modeling
approach clearly performed better than all of the alter-
natives. In particular, random forest models had the
highest median performance scores across all four
measures of model accuracy (Table 1), and were con-
sistently ranked the best performing of the six model
types (Fig. 4). Random forests were the best performing
models with respect to AUC and « for 88% of species.
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Fig. 1 Maps of the current range of the black tufted-ear marmoset (Callithrix penicillata) as predicted by six alternative modeling

approaches. See Table 1 for an explanation of model abbreviations.

The superiority of the random forest models as mea-
sured by AUC, x, and the percentage of correctly
predicted presences was independent of species range
size. Range size did, however, affect the accuracy of the
models and the ranking of some of the approaches. For
all approaches, the percentage of correctly predicted
presences increased with initial range size (Fig. 5),
whereas the percentage of correctly predicted absences
decreased with initial range size (Fig. 6). Range size had
little effect on the ranking of the modeling approaches
with respect to the percentage of correctly predicted
absences (Table 2) but more substantially affected the
ranking of the approaches with respect to correctly
predicted presences (Table 3). In particular, GARP mod-
els were the best at predicting presences for the species
with the smallest ranges. This reduced omission error
came at a cost, however, because GARP models had the
highest commission error rates.

We noted some distinct differences in the models
built for the 21 species for which land-cover data were
not used in the modeling process. For all but the
generalized linear models and random forest models,
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the predictions for these species had higher commission
error rates and lower omission error rates than the other
79 species for which land-cover data were used.

Discussion

Differences in bioclimatic modeling approaches

There are several different approaches to predicting
changes in species distributions as a result of climate
change (Iverson & Prasad, 1998; Shafer et al., 2001;
Pearson et al., 2002; Aratjo et al., 2004; Meynecke,
2004; Thomas et al., 2004). With few exceptions, pre-
vious studies have found very little consistency in
the performance of these alternative approaches (Moisen
& Frescino, 2002; Robertson et al., 2003; Thuiller, 2003;
Segurado & Aratjo, 2004). We have found similar incon-
sistency among models. Others have demonstrated that
certain modeling approaches work differently for groups
of species that demonstrate qualitatively different rela-
tionships with their environments (Segurado & Aratjo,
2004). The six modeling techniques that we applied in
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Fig. 2 Maps of the predicted future range of the black tufted-ear marmoset (Callithrix penicillata) as predicted by six alternative
modeling approaches. See Table 1 for an explanation of model abbreviations.

this study make different assumptions about the relation-
ships between species and their environments (Guisan &
Zimmermann, 2000). For example, generalized linear
models assume a given response curve that defines the
relationship between the probability of presence and
various environmental gradients. These models will gen-
erally work well for species with relatively simple rela-
tionships to environmental gradients. The other five
techniques that we tested are more flexible with respect
to the complexity of the relationships that they can
model. For example, GAMs allow for complex relation-
ships with individual variables to be modeled. They are
not, however, as adept at modeling complex interactions
between variables as are classification tree models or
random forests. Artificial neural networks and GARP
models, the two machine-learning-based approaches
tested here, are in part an attempt to model both complex
relationships with individual variables and complex in-
teractions among those variables.

Inconsistencies in bioclimatic model predictions

The inconsistency among bioclimatic models has led
some to suggest innovative methods for addressing

model uncertainty that involve finding consensus
among different models and then selecting the model
that best represents these commonalities (Thuiller, 2003;
Thuiller et al., 2004b). Another approach to reducing
uncertainty is to ask whether some models might
simply perform better than others, and hence we need
not consider all of their predictions. Pursuing that
strategy, our study compares essentially the full suite
of correlative bioclimatic modeling approaches with a
common data set, several metrics of model perfor-
mance, and alternative assumptions about dispersal.
The lessons are clear. First, random forest predictors,
which averaged the predictions of hundreds of models,
were consistently the best performers, and for the data
we examined, performed remarkably well. They
achieved error rates of less than 15% for presences
and less than 1% for absences. We are aware of only
one other study that has compared the performance of
random forest predictors to other models for use as
climate-envelope models. Prasad et al. (2006) found that
random forest models and bagging (another tree-based
model-averaging approach) consistently produced bet-
ter predictions than multivariate adaptive regression
splines and regression trees for predicting the distribu-
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Fig. 3 Climate-induced range contractions and expansions for
100 species as predicted by six different modeling approaches.
We report the percentage of species predicted to experience each
of three levels of range contraction when (a) individuals are
assumed to be able to disperse completely into their future range
and (b) when individuals cannot disperse out of their current
range. We also report the percentage of species predicted to
experience three levels of range expansion (c).

tions of four tree species. The performance of each of the
other five modeling approaches tested here, but not by
Prasad et al., is generally comparable with the perfor-
mance of models of the same type tested elsewhere
(Thuiller et al., 2003; Pearson et al., 2004; Segurado &
Aratjo, 2004).

Our results raise the obvious question of why random
forest models work so remarkably well. The strength of
this approach likely lies in the power derived from
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Fig. 4 Ranking of the performance of six different modeling
approaches for predicting the current distribution of 100 mam-
mal species. Performance was assessed as (a) the percentage of
correctly predicted presences, (b) the percentage of correctly
predicted absences, (c) the k statistic, and (d) the area under
the receiver-operating characteristic curve (AUC). Each set of
box and whiskers represents the median, first and third quar-
tiles, and the maximum and minimum values. See Table 1 for an
explanation of model abbreviations.

averaging hundreds of different models (Breiman,
2001). The individual models are built with randomly
selected subsets of the data and randomly selected
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Fig. 5 Relationships between model accuracy (as measured by the percentage of correctly predicted presences) and species range size
for 100 mammal species using six different modeling approaches. See Table 1 for an explanation of model abbreviations.

subsets of the predictor variables. Although we aver-
aged 10 artificial neural networks and 10 GARP models
to produce predictions for each species, the model
averaging accomplished by random forest predictors
is much more comprehensive. Although it is possible
that model averaging applied similarly to techniques
other than the classification trees on which random
forests are based would produce models of comparable
accuracy, the tree-based models themselves provide
added advantages over other modeling approaches. In
addition to providing a method for modeling complex
interactions without having to specify them a priori,
tree-based models allow the relationships between the
response and the predictors to vary over the domain of
the study. This is particularly advantageous for model-
ing data that cover large and diverse geographic areas.

The second lesson to be taken from our study is that
the different modeling approaches tend to be relatively
consistent in the types of errors they make. For example,
classification trees produced the most omission errors
whereas GARP models had the highest commission
error rates. These errors, in turn, lead to different
predicted range shifts, extinction rates, and changes in
species composition at specific sites. The large number

of commission errors produced by the GARP models
may, in part, reflect a difference in philosophy inherent
in the design and execution of GARP. The model is
generally used with presence-only data (e.g. Peterson
et al., 2002). Without true absences, it is impossible to
fully assess model accuracy; one cannot determine
whether predicted presences that do not coincide with
the presence data represent commission error or un-
sampled presences. Indeed, when GARP is applied,
many of the predicted presences that do not correspond
with presence data points are generally assumed to
either represent unrecorded presences or the unrealized
portions of a species’ fundamental niche (Anderson
et al., 2003). While this assumption may be true, our
results indicate that it may lead to an overly optimistic
view of model performance. In our study, because we
used both presence and absence data, we were able
to identify commission error and thus fully test the
GARP models.

It is important to recognize that no correlative mod-
eling approach can accurately model the fundamental
niche of a species. Whether using presence only data or
data on presences and absences, the best one can do
with a correlative approach is to approximate a species’

© 2006 The Authors
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Fig. 6 Relationships between model accuracy (as measured by the percentage of correctly predicted absences) and species range size
for 100 mammal species using six different modeling approaches. See Table 1 for an explanation.

Table 2 Median rankings of the accuracy of six different
modeling approaches for predicting current absences of 100

mammal species

Median model rankings (for correctly predicted absences)

Species with
ranges of
50-200 cells

Species with
ranges of
201-1000 cells

Species with
ranges >1000
cells

IRF RF RF
TREE TREE TREE
GLM GLM GAM
GAM GAM GLM
ANN ANN ANN
GARP GARP GARP

Species have been divided into three groups based on current
range size. The three columns in the table represent model
rankings for (from left to right) 39 species with ranges con-
sisting of 50-200 grid cells, 31 species with ranges of 201-1000
grid cells, and 30 species with ranges of >1000 grid cells. The
highest ranked models are at the tops of the columns and
models tied in rank are linked with a vertical line. See Table 1
for an explanation of model abbreviations.

© 2006 The Authors

current realized niche and hope that the modeled
relationships hold in the future. Although there is no
assurance that the model that most accurately predicts
the current distribution of a species will always produce
the most accurate future predictions, it is likely that
minimizing known errors in the current predictions will
reduce the total amount of error in projections of future
or past ranges.

In addition to being prone to committing specific
types of errors, different modeling approaches may also
be more or less sensitive to various attributes of the data
used in the modeling process. For example, some
modeling approaches may be more robust to changes
in spatial resolution (Thuiller ef al., 2003) and some may
be more robust to the changes in spatial extent (Thuiller
et al., 2004c). Some modeling approaches may be more
sensitive to the ratio of presences to absences in the data
set (Fielding & Haworth, 1995). Finally, some modeling
approaches may be more or less sensitive to the type of
predictor variables used in the modeling process (Thuil-
ler et al., 2004a). Determining the degree to which these
attributes of data sets differentially affect modeling
approaches will require a concerted research effort in
the future.
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Table 3 Median rankings of the accuracy of six different
modeling approaches for predicting current presences of 100
mammal species

Median model rankings (for correctly predicted presences)

Species with Species with Species with

ranges of ranges of ranges > 1000
50-200 cells 201-1000 cells cells

GARP RF RF

RF GARP ‘ GLM

GLM GLM GAM

ANN GAM ANN

GAM ANN GARP

TREE TREE TREE

Species have been divided into three groups based on current
range size. The three columns in the table represent model
rankings for (from left to right) 39 species with ranges con-
sisting of 50200 grid cells, 31 species with ranges of 201-1000
grid cells, and 30 species with ranges of >1000 grid cells. The
highest ranked models are at the tops of the columns and
models tied in rank are linked with a vertical line. See Table 1
for an explanation of model abbreviations.

The last lesson we can take from our study is that the
models differed greatly in the extent to which they
predicted shrinking ranges vs. expanding ranges in
the face of climate change. For example, when we
assumed unlimited dispersal, classification tree models
predicted extinctions for 7% of the species compared
with GARP models, which predicted no extinctions.
Similarly, Thuiller et al. (2004b) demonstrated potential
differences in predicted extinction rates across model-
ing approaches ranging from less than 1% to roughly
5% over a 50-year period.

Limitations and advances in bioclimatic modeling

Although bioclimatic models are a useful tool for in-
vestigating the effects of climate change on biodiversity
at large spatial scales, they are not without their limita-
tions. Our analyses address one aspect of the uncer-
tainty associated with current bioclimatic models and
highlight a tool for reducing this uncertainty. There are,
however, several other points at which uncertainty
enters the bioclimatic-modeling process. The limitations
of bioclimatic models have been thoroughly reviewed
by Pearson & Dawson (2003). Here, we discuss four of
these limitations.

First, most correlative approaches do not directly
model biotic interactions. These interactions can have
strong influences on species’ responses to climate
change (Davis ef al., 1998). As a first step to addressing
biotic interactions, we included vegetation in our mod-

els as a proxy for animal-habitat interactions. Although
simple vegetation associations cannot capture all biotic
interactions, they likely represent some of the most
basic, resource use, predator—prey, and competitor in-
teractions. Models that assume climate variables will
serve as a proxy for vegetation, will fail to capture the
effects of changes in atmospheric CO, concentrations on
animal habitat. Including vegetation in bioclimatic
models for animals is only a first step to addressing
biotic interactions. Explicitly modeling interspecific in-
teractions will involve linking bioclimatic models for
multiple species or further integrating mechanistic and
correlative models.

The second limitation of correlative models is that
they do not address dispersal. Assuming that organ-
isms can fully disperse into their projected future range
or that they will be limited to that portion of their
projected future range that overlaps their current range
is overly simplistic. One solution is to link bioclimatic
model projections with simulated dispersal patterns
(e.g. Peterson et al., 2002). Such integrated modeling
approaches will provide more accurate predictions of
future distributions.

The third limitation of bioclimatic models is that they
cannot account for evolutionary change. For species
with rapid adaptation rates, evolutionary changes
may influence the impacts of climate change on species
distributions (Hoffmann & Parsons, 1991; Thomas et al.,
2001). However, for many species, evolutionary change
will likely lag far behind climate change (Peters &
Darling, 1985; Etterson & Shaw, 2001). With respect to
evolutionary change, bioclimatic approaches will most
accurately model species with poor dispersal capabil-
ities and long generation times (Pearson & Dawson,
2003).

Finally, the fourth limitation of bioclimatic ap-
proaches is that the models are exceedingly difficult to
validate. Ideally, models are validated with data that are
completely independent of the data used to build them.
However, many models are evaluated with the same
data used in model building (e.g. Huntley et al., 2004).
In these cases, there is a complete lack of independence
of the data sets, which prevents any assessment of
whether or not the models over-fit the data. Another
common approach is the one taken in this and many
other studies (Iverson & Prasad, 1998; Pearson ef al.,
2002; Thuiller, 2003) in which data are split into two
sets, one of which is used to build the models and the
other of which is reserved for model validation.
Although this approach provides some independence
of the model building and validating data sets, the
reserved data are not completely independent because
of spatial autocorrelation (Koenig, 1999). To obtain a
completely independent data set, one must find data
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from a geographically distinct region (Fielding &
Haworth, 1995) or from a historical period (Aratjo
et al., 2005) — although the latter may still be both
spatially and temporally autocorrelated.

For continental analyses, truly independent data sel-
dom exist. Many species that occur on multiple con-
tinents do so because they are invasive exotics and,
thus, may not be at equilibrium with their new envir-
onments. Historic data for most species do not exist.
When they do, they often provide few data points for
model validation. Fortunately, there is evidence that
bioclimatic model validation estimates based on semi-
independent reserved validation data sets may approx-
imate estimates based on more independent data sets.
Aratjo et al. (2005) found that model performance
estimates based on historic bird ranges were similar to
performance estimates based on a reserved data set.

Despite these limitations, we should not underesti-
mate the role of bioclimatic models in assessing the
potential effects of climate change. Bioclimatic model
predictions should be seen as a first approximation of
the potential effects of climate change on biota at large
spatial scales and not as accurate predictions of future
distributions of individual species (Pearson & Dawson,
2003). Although dynamic global vegetation models
(DGVMs) currently provide a process-based alternative
for projecting climate-induced shifts in vegetation types
or biomes (Bachelet ef al., 2001; Sitch et al., 2003),
building purely mechanistic models for large numbers
of individual species would be a massive undertaking
because of the lack of knowledge of species’ life his-
tories and physiologies and the amount of work each
individual model would require. Indeed, mechanistic
models come with their own uncertainties as DGVM-
comparison studies demonstrate (Cramer et al., 2001;
Bachelet et al., 2003). Our results highlight one specific
modeling approach that will reduce the uncertainty in
bioclimatic-model predictions. Reducing the uncer-
tainty associated with biotic interactions, dispersal,
and evolutionary change will involve even more crea-
tive approaches that combine mechanistic and correla-
tive models.

Conclusions

The uncertainties in future range predictions that can be
attributed to the errors in the bioclimatic models cur-
rently in use are likely to be greater than the uncertain-
ties of actually predicting the underlying climate change
(i.e. the differences among climate models and emis-
sions scenarios) (Thuiller, 2004). This means that unless
we can produce more accurate bioclimatic models, they
cannot really be used to compare the consequences of
different greenhouse gas emissions scenarios. Looking

© 2006 The Authors

forward, it appears that random forest models or other
model-averaging approaches may yield robust predic-
tions of range shifts in the face of climate change. It will
still be difficult to translate these predictions into ex-
pected extinctions and species turn-over rates because
actual range shifts will depend on dispersal, evolution-
ary flexibility, and species interactions. Nonetheless, for
the sake of adaptive management and conservation
planning, random forest models provide a useful and
reliable tool. By minimizing the uncertainty in biocli-
matic models, studies of climate-induced range shifts
can concentrate on elucidating the effects of the more
important uncertainties in climate-change predictions.

Acknowledgements

We thank Peter Kareiva, Louis Iverson, Dan Kluza, Anne Guerry,
Don Phillips, Tom Edwards, John Van Sickle, and two anon-
ymous reviewers for useful discussions and comments on the
manuscript. Species distribution data were provided by Natur-
eServe in collaboration with Bruce Patterson, Wes Sechrest,
Marcelo Tognelli, Gerardo Ceballos, The Nature Conservancy —
Migratory Bird Program, Conservation International — CABS,
World Wildlife Fund — US, and Environment Canada — WILD-
SPACE. Funding was provided by a David H. Smith Conserva-
tion Fellowship awarded to J. L. by The Nature Conservancy and
the Society for Conservation Biology. We also thank Betsy Smith
and the US Environmental protection Agency’s Regional Vulner-
ability Assessment program for providing additional funding
and support. This paper has been subjected to review by the US
EPA National Health and Environmental Effects Research
Laboratory’s Western Ecology Division and approved for
publication. Approval does not signify that the contents reflect
the views of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommenda-
tion for use. This is publication no. DHS2006-03 of the David
H. Smith Conservation Fellowship Program.

References

Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive
models of species’ distributions: criteria for selecting optimal
models. Ecological Modelling, 162, 211-232.

Aratijo MB, Cabeza M, Thuiller W et al. (2004) Would climate
change drive species out of reserves? An assessment of
existing reserve-selection methods. Global Change Biology, 10,
1618-1626.

Aratjo MB, Pearson RG, Thuiller W ef al. (2005) Validation of
species—climate impact models under climate change. Global
Change Biology, 11, 1504-1513.

Bachelet D, Neilson RP, Hickler Tef al. (2003) Simulating past and
future dynamics of natural ecosystems in the United States.
Global Biogeochemical Cycles, 17, 14-21.

Bachelet D, Neilson RP, Lenihan JM et al. (2001) Climate change
effects on vegetation distribution and carbon budget in the
United States. Ecosystems, 4, 164-185.

Breiman L (2001) Random forests. Machine Learning, 45, 5-32.

Breiman L, Friedman JH, Olshen RA et al. (1984) Classification and
Regression Trees. Wadsworth and Brooks/Cole, Monterey, CA.

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568-1584



1580 J.J. LAWLER et al.

Chambers JM, Hastie TJ (1991) Statistical Models in S. Chapman &
Hall, Boca Raton, FL.

Cramer W, Bondeau A, Woodward FI et al. (2001) Global
response of terrestrial ecosystem structure and function to
CO, and climate change: results from six dynamic global
vegetation models. Global Change Biology, 7, 357-373.

Davis AJ, Jenkinson LS, Lawton JH et al. (1998) Making mistakes
when predicting shifts in species range in response to global
warming. Nature, 391, 783-786.

De’ath G, Fabricius KE (2000) Classification and regression trees:
a powerful yet simple technique for ecological data analysis.
Ecology, 81, 3178-3192.

Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in
response to global warming. Science, 294, 151-154.

Fielding AH, Bell JF (1997) A review of methods for the assess-
ment of prediction errors in conservation presence/absence
models. Environmental Conservation, 24, 38—49.

Fielding AH, Haworth PF (1995) Testing the generality of bird
habitat models. Conservation Biology, 9, 1466-1481.

Guisan A, Edwards TC, Hastie T (2002) Generalized linear and
generalized additive models in studies of species distribu-
tions: setting the scene. Ecological Modelling, 157, 89-100.

Guisan A, Zimmermann NE (2000) Predictive habitat distribu-
tion models in ecology. Ecological Modelling, 135, 147-186.

Hastie TJ, Tibshirani R] (1990) Generalized Additive Models. Chap-
man & Hall, London.

Hoffmann AA, Parsons PA (1991) Evolutionary Genetics and
Environmental Stress. Oxford University Press, Oxford.

Holm S (1979) A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics, 6, 65-70.

Houghton JT, Ding Y, Griggs DJ et al. (eds) (2001) Climate Change
2001: The Scientific Basis. Cambridge University Press, Cam-
bridge.

Huntley B, Green RE, Collingham YC ef al. (2004) The performance
of models relating species geographical distributions to
climate is independent of trophic level. Ecology Letters, 7,
417-426.

Iverson LR, Prasad AM (1998) Predicting abundance of 80 tree
species following climate change in the eastern United States.
Ecological Monographs, 68, 465-485.

Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley
Centre coupled ocean—atmosphere GCM; model description,
spinup and validation. Climate Dynamics, 13, 103-134.

Kattenberg A, Giorgi F, Grassl H et al. (1996) Climate models:
projections of future climate. In Climate Change 1995: The
Science of Climate Change. Contribution of Working Group 1 to
the Second Assessment Report of the Intergovernmental Panel on
Climate Change (eds Houghton HT, Meira Filho LG, Gallander
BA, Harris N, Kattenberg A, Maskell K), pp. 285-357. Cam-
bridge University Press, Cambridge.

Koenig WD (1999) Spatial autocorrelation of ecological phenom-
ena. Trends in Ecology and Evolution, 14, 22-25.

Leemans R, Cramer W (1991) The IIASA database for mean
monthly values of temperature, precipitation and cloudiness
of a global terrestrial grid. International Institute for Applied
Systems Analysis (ILASA). RR-91-18.

Lomolino MV, Riddle BR, Brown JH (2005) Biogeography. Sinauer
Associates Inc., Sunderland, MA.

Loveland TR, Zhu Z, Ohlen DO et al. (1999) An analysis of the
IGBP global land-cover characterization process. Photogram-
metric Engineering and Remote Sensing, 65, 1021-1032.

McCullagh P, Nelder JA (1989) Generalized Linear Models.
Chapman & Hall, London.

Meynecke J-O (2004) Effects of global climate change on geo-
graphic distributions of vertebrates in North Queensland.
Ecological Modelling, 174, 347-357.

Moisen GG, Frescino TS (2002) Comparing five modelling
techniques for predicting forest characteristics. Ecological
Modelling, 157, 209-225.

Monserud RA, Leemans R (1992) Comparing global vegetation
maps with the Kappa statistic. Ecological Modelling, 62, 275-293.

Neilson RP (1995) A model for predicting continental scale
vegetation distributions and water balance. Ecological Applica-
tions, 5, 362-385.

Nix HA (1986) A biogeographic analysis of Australian elapid snakes.
In Atlas of Elapid Snakes of Australia (ed. Longmore R), pp. 4-15.
Australian Government Publishing Service, Canberra.

Parmesan C, Yohe G (2003) A globally coherent fingerprint of
climate change impacts across natural systems. Nature, 421,
37-42.

Patterson BD, Ceballos G, Sechrest W et al. (2003) Digital
Distribution Maps of the Mammals of the Western Hemisphere,
Version 1.0. NatureServe, Arlington, VA.

Pearson RG, Dawson TP (2003) Predicting the impacts of climate
change on the distribution of species: are climate envelope
models useful? Global Ecology and Biogeography, 12, 361-371.

Pearson RG, Dawson TP, Berry PM et al. (2002) SPECIES: a
Spatial Evaluation of Climate Impact on the Envelope of
Species. Ecological Modelling, 154, 289-300.

Pearson RG, Dawson TP, Liu C (2004) Modelling species
distributions in Britain: a hierarchical integration of climate
and land-cover data. Ecography, 27, 285-298.

Peters RL, Darling JDS (1985) The greenhouse effect and nature
reserves. Bioscience, 35, 707-717.

Peterson AT, Ortega-Huerta MA, Bartley J et al. (2002) Future
projections for Mexican faunas under global climate change
scenarios. Nature, 416, 626—629.

Prasad AM, Iverson LR, Liaw A (2006) Newer classification and
regression tree techniques: bagging and random forests for
ecological prediction. Ecosystems, 9, 181-199.

Ripley BD (1996) Pattern Recognition and Neural Networks.
Cambridge University Press, Cambridge.

Robertson MP, Peter CI, Villet MH et al. (2003) Comparing
models for predicting species’ potential distributions: a case
study using correlative and mechanistic predictive modelling
techniques. Ecological Modelling, 164, 153-167.

Root TL, Price JT, Hall KR ef al. (2003) Fingerprints of global
warming on wild animals and plants. Nature, 421, 57-60.

Segurado P, Aratjo MB (2004) An evaluation of methods for
modelling species distributions. Journal of Biogeography, 31,
1555-1568.

Shafer SL, Bartlein PJ, Thompson RS (2001) Potential changes in
the distribution of western North America tree and shrub taxa
under future climate scenarios. Ecosystems, 4, 200-215.

Sitch S, Smith B, Prentice IC et al. (2003) Evaluation of ecosystem
dynamics, plant geography and terrestrial carbon cycling in

© 2006 The Authors

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568-1584



MODELING CLIMATE-INDUCED RANGE SHIFTS 1581

the LPJ dynamic global vegetation model. Global Change
Biology, 9, 161-185.

Stehman SV (1997) Selecting and interpreting measures of
thematic classification accuracy. Remote Sensing of Environment,
62, 77-89.

Stockwell DRB, Noble IR (1992) Induction of sets of rules from
animal distribution data: a robust and informative method of
data analysis. Mathematics and Computers in Simulation, 33,
385-390.

Therneau TM, Atkinson EJ (1997) An introduction to recursive
partitioning using the RPART routines. http://www.mayo.edu/
hsr/techrpt/61.pdf

Thomas CD, Bodsworth EJ, Wilson R] et al. (2001) Ecological and
evolutionary processes at expanding range margins. Nature,
411, 577-581.

Thomas CD, Cameron A, Green RE et al. (2004) Extinction risk
from climate change. Nature, 427, 145-148.

Thuiller W (2003) BIOMOD - optimizing predictions of species
distributions and projecting potential future shifts under
global change. Global Change Biology, 9, 1353-1362.

Thuiller W (2004) Patterns and uncertainties of species’ range shifts
under climate change. Global Change Biology, 10, 2020-2027.

Thuiller W, Aratjo MB, Lavorel S (2003) Generalized models vs.
classification tree analysis: predicting spatial distributions of
plant species at different scales. Journal of Vegetation Science, 14,
669-680.

Thuiller W, Aratijo MB, Lavorel S (2004a) Do we need land-cover
data to model species distributions in Europe? Journal of
Biogeography, 31, 353-361.

© 2006 The Authors

Thuiller W, Aratijo MB, Pearson RG et al. (2004b) Biodiversity
conservation: uncertainty in predictions of extinction risk.
Nature, 430, doi:10.1038 /nature 02716.

Thuiller W, Brotons L, AratGjo MB et al. (2004c) Effects of
restricting environmental range of data to project current
and future species distributions. Ecography, 27, 165-172.

Thuiller W, Lavorel S, Araujo MB (2005a) Niche properties and
geographical extent as predictors of species sensitivity to
climate change. Global Ecology and Biogeography, 14, 347-357.

Thuiller W, Lavorel S, Araujo MB et al. (2005b) Climate change
threats to plant diversity in Europe. Proceedings of the National
Academy of Sciences, 102, 8245-8250.

Venables WN, Ripley BD (2002) Modern Applied Statistics with
S-PLUS. Springer, New York.

Wahba G (1990) Spline Models for Observational Data. SIAM,
Philadelphia.

Williams SE, Bolitho EE, Fox S (2003) Climate change in
Australian tropical rainforests: an impending environmental
catastrophe. Proceedings of the Royal Society of London B, 270,
1887-1892.

Wood SN, Augustin NH (2002) GAMs with integrated model
selection using penalized regression splines and applications
to environmental modelling. Ecological Modelling, 157, 157-177.

Appendix
Table Al

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568-1584



[esxadsip oN

[esxadsip pajruwrun

aduer juarmd jo uontodord e se aduer arnny pajIPaL]

a3uer yuarmn))

200 0 S00 600 £00 <TI0 920 SO0 SO0 €50 PO 80 00S Z¥1 ye1 35010 dnuepy pading stvsiop shuiopq
60 9/0 600 SO0 €00 9¥0 /€€ ¥HL  ¥1I ¥0 8I'T  STE 00069 O[[IpeIe pasou-3uof soue[] vjoorupqws sndhisvq
200 ZF0 ¥€0 0 920 620 <TI0 S80 ¥90 0 S0 6£0 00S££91 nnogy e erezy avvzy viooidhisuq
90 680 ¢60 880 €40 /LSO 89€ THE 8SS €C€  I8E €51 000558 T jeq padey-3oQq snuvivd sdowoufi
80 680 860 860 L60 860 60 L'l S¥L €L IFL  6€1 000008 myeajue AN[I5 snjijovpip sadojohiy
8T0 ¥T0 660 900 60 90 ¥L0 980 650 9TO0  ¥90 't 0005 0dny-ndNY, pare[jo) snjunbiog shuoua;)
0 990 0 0 0 0 LI'0 6S0L 620 ¥€T1 80 80 00S Z¥1 Ma1ys paiea-[lews eAejy stsuafivut sijoydfii)
170 850 £90 TCO0 CT0 €10 <¢OT LT S6€ /90 €40  THO 00S££21 surdnorod paurds-1ojooig 4010219 NOpUID
90 860 ¥60 860 60 880 60 IL1 L¥1 €91  6¥l €€l 0057816 yeq A[oom pares-Sig snrny sniapdojoinyD
0 %20 900 II'0 ZI0 %10 <200 680 <TE0 920 €90  I€0 0052011 D{es papiedg pasou-aiyMm snspuiq)y sa30do1yD)

0 940 820 00 ZI'0 80 <TUL %0l 8%¥0 Z0O 't 9r¢ 000S¥T DJes pPapIeaq Pasou-ajiyM snspuqqv sajodoinyD
990 /80 980 /80 980 S60 L0 660 <TUl Z0T L0  SI'T 00S Z¥€ 6 jeq pake-31q Ay WNFVIIULL] DULIOPOLIYD)
€0 850 9¢0 €90 SI0 S0 8T  6I'T 650 S9T 620 80T 00S 29T asnowt e[[rydunyd ouerdnyy apupus PMIYOUIYD
€0 9%0 €0 650 970 €90 S0CT 90 ¥O0 L0 TEO 901 00050T e[mpuIyD DAISIUY] V]IYOUIYD
Y0 910 440 140 I¥0 €0 TE I€0 ¥€9 €L SV Tl 00STHT 1 req SHVA3U0 S1410AU04FUID)
€20 900 0 400 0 TI0 /80 610 0 8€0 0 620 00S2L1 31d eoumn3 1a3e915) vuUSvIL viav)
690 850 €0 ¥0 6¥0 ¥0 FOL 840 €S0 290 LL0 LSO 00052ZS 31d eaum3 uerizeig vaiady viov)
9¢0 <S80 620 87O CO FI0 €SI 8T ¥S0 IL0  THO €0 00S209 1 josowLIeW Ied-Payny oe[g vppjpotad XLypvD
0 €0 0 0 0 100 €00 €68 0 100 €00 ZI0 000592 nL patefjo) snyvnb.oy snqaoiv)

0 $00 %00 0 0 0 100 800 %00 0 €00 0 000 0€Z Aoxuow nry, snnSa4 snqadt][vD
100 0 100 0 €00 100 €0 /€0 900 600 110 110 00051 [ paseul WIdYIIoN snpuosiad snqadijvD
0 8T0 SO0 SI'0 %00 TEO0 F0O0 SI'T STO0 8T O 6V0 00S 2L LI} pAjUOL-Oe[g SUOL1SI SNGaNIYD)

0 I€0 0 0 0 0 200 SOT €00 ¥9€ 100 200 000526 Aoxuow niy, yoojouL SngadNIv)
GT0  ¥I'0 900 0 <TI0 600 €5C FCT 800 9T0 6€0  LET 00S ZZ1 jeq padey-Sop [eroyenby  snuwiiojunbay sdowwiaiqu)
200 0 0 0 0 0 IS0 9%0 %0 <00 80  FI0 00S 791 JO[S P20}-921y} PIURA sngvnbioy sndfipvig
SI'0 ¥0 IT0 920 <C0 6€0 10T 60 L0  6F1 g0 991 000500¢C I99p YsIeN STUL0JOIIIP S14220§SD]]
GF0  6€0 SFO 80 €10 6€0 960 ¢80 €40 9I'T 810 80 0000C€ asnow paies-31q pajureJ sngord shuioosiny
€0 ¥F0 810 620 II'0 610 IS8T STI €50 /80 620  ¥80 00S 26C jeq Sunes-jmiy [eurdjel] snnouapvif snaqiisy
&0 €80 800 0 100 €£0 160 /9T 8T0 610 SO0  SEI 00SZS11 Aaxyuour yy3ru eardory, suviafiooa snioy
€90 <TI0 780 180 /SO0 F90 SE€S €60 6€L €IL  6TE LT 00S Z1¥ T Jeq SS[Ie} PaY3003-peog Suapiyv] vANOUY
800 ¥E€0 9¢0 €¥0 L00 €0 16T 10T 10T 760 600 880 0000Z€ yeq Aowrg  mjquuyds snjyooydiouy
LE0  1£0 TLO 0 0 0 /0T 6001 ZT1 S8€ <SI0 €07 00001% Aaxquowr Surpmoy par uerarog v4VS VIVNOLY
IT0 900 %00 €00 SO0 %S0 19€ IST 8¥F SL0 SF0 IS 0005/ Kaxquow Surmoy yoerg va8id vygonopy
GT0 850 LI'0 €20 610 I¥F0 <90 460 I€0 640 FEO SO 00S£C1 € Axquowr urmoy yoerg vhvapd vijUNROLYy
10 I€0 620 0 /10 6£0 8€0 90T €S0 0 120 %90 000 0€¥ T asnow sseis 1081 108412 UOPOYY
800 9%¥0 890 ¥S0 I€0 FEO0 ILT 60 8T €01  SS0 IS0 005 €% asnout sse1sd pa[aq-auym 2ju201q]v U0pPOYY
JAVD NNV £ AVD FHIL WID JdvD NNV 4 VD gl IO (@) awreu ysyduyg SWEU dYHULIG

1582 J.J. LAWLER et al.

a8uer juarmyd jo uontodoid e se axeydsruuay wrvysam oy ur seads [ewrwewr )01 Jo sazis aguer pajrpard armng TV d[qeL

2006 The Authors

N
) 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568-1584

©

p

©

</

P

Journal compilation



MODELING CLIMATE-INDUCED RANGE SHIFTS 1583

w0 0 40 820 920 S0 9¢F% 100 949 €€ €50 STl 005 78S 9SNOW Pajooy-a[qUIIN] sad1aa) snoshuioiad
Y0 €0 ¥€0 100 €70 S§T0 ¥F0 90 €¥0  ¥00 €0 960 000S6€T OpNOOH Pay snfni sniaphuhxo
80 960 ¥S0 60 £90 60 IS0 84T /80 19T 960 951 00S20€ S jel 0 sesung snuvSunh shuwozfiQ
€0 800 €0 €00 II'0 790 90€ SE0 9T 680 €80  9T€ 000 0€E jel 3du pasou-Zuo snjvagsos shuozhiQ
€0  1T0 860 950 7O 860 880 60T 960 L€ 8TO0  T91 00STVIL jer aory vhnoduv shuiozhiQ
¢I'o <80 ¥00 II'0 SO0 <TI0 989 790l 9¥0 8€0 €FI  S€0 000 58T JeI 90U [e2I0qIy snsopads shui0aQ
680 80 790 L0 I¥0 ¥80 II'€ 1TT 6T1 161 90 L1 00STELT jeq pa[re)-2a1y paIP0J  sn2ovsoiomaf sdowouridAN
IO €80 €70 0 €0 ZI'0 190 Z0S £90 0 90 €0 000641 JRIPOOM S, PUBWP[OD) upp|o8 viiojoaN
/90 980 ¥0 TS0 940 9S50 STI 79l 190 680 STI /80 00056€S asnout o[oq pajre}-A1re] snnisv] sAuioioaN
9¢0 0 620 €¥0 €0 ST0 89/1 0 F0SE €81 8¥IE  ¥LO 000012 T}EOD UTRJUNOJA v20D01]0 V][INSUN
Y00 €70 1€0 S¥O 6T0 9¥0 10 960 ¥0 650 €€0 190 000521 spoAur pay 4aqn. s10AN
650 G0 €S0 IF0 860 6£0 90T 660 <TLO0 STL TS0 980 000006¢ SHOAW YSIMO[[OA s102] s130AN
LL0 890 S80 SL0 690 S£0 €I 80 10T  ¥OT 640  TIL 000SIIE spoAw pares-3uor] $13002 10NN
00 €60 STO STO  LE0 L0 S0 6TY LTI 49T SOT 161 00000€T Ayonooe pay fiyyonoow vpooidoAiyy
9,0 690 ¥60 940 S90 80 90T 60T €0T 601 80 1L 00000z T [oseam pa[re3-3uo] vjpuaLf vjaIsnN
€80 S60 760 60 T60 €60 680 6V €1 vl 8L LTl 00S294¢ 3[0A PUB[POOM winiogauid snjosnN
990 /ZF0 SS0 PO  9¥0 FP0 ZL1 ST 8I'T TSl I'T 180 00STSET 3[OA eIpunyf, SNUL010J0 SHOLILAT
90 T60 880 S60 /80 S60 640 691 1671 7T €0T ¥l 00S 78T jeq parea-3iq A1reH IS S12IAU0IOIN
/90  ¥L0 ¥90 9¥0 €€0 <90 ¢8I ITT 6Ll 180 €50  8I'L 00STES T Jurn{s papoo vanosovut syrydapy
91'0  THO0 ¥E0 200 0 10 859 TFI 1I€T TSE 0 90 000SST MIIYS UBIDRN SUSLS X240SUSIN
V0 IS0 120 €80 G40 T80 €80 160 STl IST LTl €F1 000557 € IoYsL] yuvuuad sajvp
00 €90 STO S€0 920 €0 10 €81 80 €T 690  ZI'L 00ST8TT wnssodo asnow 1apua[s 33edPJ suapiaivd sdosouLivpy
€0 ¥90 €V0 I'0 €0 €0 920 641 S40 TO 190  /FO 0005781  wmssodo asnow 1apud[s PaI[[2q-IYM sn8varpoou sdosoutivjy
790 850 80 640 €V0 SL0 €601 9% 91l ¥¥CL T8T  S89 000592 wnssodo asnow s, euosurqoy 1U0SUIqO.L VSOULIIIT
€0 ¥90 950 SO0 IF0 IO 691 ZL1  TLO0 V60 950 €60 000020 T [eseam ueruodeieJ snomodvyvd uopoouhy
80 €F0 £00 950 8T0 €V0 6L 61 T90  9LLL 860 €66 005 29T jeq PISOU-PIOMS 0D0ULIQ) SISUDIOULIO DUILAOHIUOT]
IT0 €00 200 600 0 0 6Fe 910 00 €67T 0 810 008 £TT Jeq Ie}OSU UIRISIM vLiadsay vjifiydorpuoy
840 680 960 60 60 L60 980 90T 9T 9T 9Tl  LUL 00S LEL L jeq pan3uo}-3uof yreq 14195qo stiajofiuoyor]
680 650 TL0 10 ¥S0 €40 ¥l ¥60 FIT L1 90 ISl 000S9¥ € yqqenpel pafre-a3rym npuasumoy sndaj
L0 ¥S0 90 SO0 S50 S80 6SE VI 6L€ €0l SLS e 0000ST nqqenpel adopiuy wajjy snday
760 T60 660 660 80 660 80 I€T <cI'l /Il Il Tl 00S €T ST 301220 stwpavd snpivdoa]
€60 860 ¥60 F¥60 660 F¥60 90T ¥CI SOT Tl Tl Tl 000S01ET vreqAde)  suovyooiphy stavo0ipht]
850 THO SL0 190 ¥S0 SS0 ZOL /S0 0T L0 80 /60 000S12C jeq umoiq pared-3ig SNJ0IOVUL SNJOLISIE]
950 860 L0 840 890 6V0 T6L €8T FILL 80SL 6SSI 0¥ 00S 268 asnow 3xpod Aurds pepruriy, snjpuouy shiulota3ar]
/80 980 ¥60 T60 €80 60 €T 8I'l  GI  SST €Il TEL 00Sz9€T 1 jeq umoiq 3ig snosnf snoisajdg
€0 Y0 ¥S0  6¥0  ¥E0 IS0 €90 950 640 €80 S¥0  ¥OL 00STST€ dUROISG dARNUIWI] snynuup snaisajdy
100 920 200 800 0 800 680 SOT 810 T¢I 0 /20 005212 JeI }$310§ ULV PI[[e] snypauqns shuojaq
DIVD NNV I AVD L WID VD NNV 2 AWVDO IRl WD (ur)) aureu ystsug swieu dYHUSS

reszadsip oN

Teszadstp pajruarun)

a8uer juarmd jo uontodord e se aduer arniny pajoIpaI]

a3uer yuarn))

(pruoD) "1V 9[qeL

© 2006 The Authors

Journal compilation © 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568-1584



‘(Tesxadsip ou) padderroso sauer pajorpaid aining pue JUSLIND A} YIIYM UL Seare
03 PILISAI dIoM A3} Jey) “A[9s19AU00 10 ([esradsip pajruurjun) aSuer mau pajorpaid ayy ojur A[239[dwod as1adSIp pInod S[enpIAIpuL Jey} pawnsse SOLeuads [es1adsip oy L (VD)

uorndrpaid 39s-ani 10§ sunpLogd[e onoueg pue ‘(NNV) SYI0MISU [eINdU [eDYHRIe ‘(Y) SI0301paid 19105 Wopuer ‘(AVD) SPPOW dARIpPe pazierousd (JHYL) S99} UOT}edIISSe[d
‘N'TD) S[PPOW JIeaul] pazI[eIousd papnul SPPOW ] ‘SOLIEUddS [esiadsIp Jualafjip om) uaard saypeordde Surepow juaraprp xis Suisn paprpaid areom saduer arnng

90 €50 950 950 €F0 TS0 60T 60 ¥90 820 190 940 000S/¥ T npIg Ayord snhipavz
90 ¥80 S0 /S0 180 £L60 IS0 10T ZL0 ¥90 660  LT1 0057899 Jeq paIea-mo[PA djejuaplg suapiq vssaifiduip
€80 860 660 ¥60 960 S60 880 SOT FIT 660 Il 20T 000009 ZT jeq Supjew-juaL WNjuqo]1q VULiapoin)
/80 680 960 80 €0 860 SI'T S€T TEL S9T  9F1 891 000STT Z Jeq paies-punor papesy-adiyg vpydoinvs viguol
G800  £90 ¥80 /80 ¥90 ¥80 €T 95T 99T ST Il 181 000588 T 1aydo8 3oxpod s eenog avj30q shuouioy |
760 60 680 /80 680 <S80 6L TI 90T COT SOTL 10T 00541201 [Pxmbs pay  snomospny sniniosiuy]
190 200 SO0 €20 SO0 €20 €9F 10 ZI0 60C I'0 /ST 005 28T syunwdnp ejurn SHULIQUN SUIUY],
¥5°0 0 0 /00 0 0 609 TO T00 €V 0 600 000 0% T syunwdnp dopg snfni spuy]
910 TC0 €10 600 FOO S8€0 9€T STT SL0 €40 ZTO0  IST 00S Z€1 jeq PaIdP[NOYS-MO[[oA 19s597] VUL DALINGS
€0 ¥E0 6F0 SE0  TT0 800 ¥80 90 FOT €40 €50  ZTO 0000.¥ T Jeq paIap[noys-mo[[eA 1o3ears VUSVUL DAUINIS
690 S0 900 810 I'0 620 I¥FE 6£0 LI'0 990 €20 90 00S2LT errmbs punoi3 SunuoApy suv8aja snjnydoutiads
/90 F60 €60 160 680 €80 840 ¢€T €l 6I'T II'T  SOT 00S £19 0T 3op ysng snolvuan soyjoads
G/0 880 SS0 THO LT0 8S0 ST SFT ¥80 €90  ¥0 I'1 00S Z0¥ MaIYS §,e3pLIgMOI], u8pLiqmodty xaiog
¥I'0 10 S0 650 620 I¥F0 ¥0 190 95T S¥T 680 601 00S.2€ Mma1ys parey-3uo] Avdsip xai05
€0 /LS0 850 90 6¥0 €40 94T  ¥T L1  8LT 681 891 00S ZF€ FeI U0}0D LUOZIIY AVUOZLIY UOPOUTIS
L0 0 %00 100 — 100 Z8€ 610 ¥C0 €¥0 —  €£0 00S 20T 3SNOW UMOI] §,BUOIS[Y vuInda) shuiou1joos
G0 960 960 960 980 660 160 ¢ST TST ST ST 991 00S ZOE¥ [11mbs xo3 urvsey 42811 sninidg
0 180 S0  ¥0 6€0 €0 10T  6CT 690 T80  T90 S0 0057269 [Parmnbs ueuemn SUDNYSIV SNANIOS
960 ¥0 190 6V0 ¥¥0 9¥0 €T 10T LT 84T /90  6€1 00S2€€ a[ow Pajooj-peoiq snupiigv] snuvdvog
II0  €C0 810 0 110 0 9CI 85T 960 8€0 0 600 000519 yeq padurm-des UeruoZeury vinuwhis xAiajdosowg
80 60 660 960 F60 460 I'T  SFT 94T  8ST 8T SFI 00S ££9 Z Jeq mo[[PA B[] pasuIm-3de[g vp1ung vssaaSoly
/60 980 ¥60 €80 €40 190 8ST /ST IEE 8T T €1 00S290% jeq paypeg-payeu sedaeq thiavp snjouo.asg
200 950 SO 0 S0 /10 €01 €I'T 980 64T T80 €0 005240 T yer Lurdg 1342qoL shuungoaol]

0 0 0 0 0 0 <0 3¥S1 0 ¥00 0 2o 000522 yer Luids ereq S140 sAUIA0L]

810 60 840 SI'0 890 ¥C0 880 SI'T S8ST IO  6€1 L0 0000€0 € jer Aurds suuake) stsuauLafivd shuiya04
L0 T60 460  ¥80 ¥80 €60 €80 9TI €L 960 660 90T 00059201 yeq pasou-peoiq s,eIR[[PH iafjay snunyiifip]d
100 640 810 800 <TI0 1IT0 SO0 €T€ 6V0 ST0 6€0  €€0 000 ST¥ asnowt pEYpP[O snjouoijod snashiuoiad
JAVO NNV £ AVD JHIL WID JdvD NNV 4 VD gL WID (ury) aweu ysyduyg SWEU dYHULDG

2006 The Authors

N
) 2006 Blackwell Publishing Ltd, Global Change Biology, 12, 1568-1584

©

p

©

</

P

Journal compilation

1584 J.J. LAWLER et al.

a8uer juarn))

resxadsip oN [esxadsip payrwrun

a8uer juarmd jo uontodord e se aduer arnny pajIPaL]

(pruoD) "IV dqeL



