
Abstract Exposure to ultraviolet-B radiation (UV-B;
280–320 nm) has a wide array of effects on aquatic or-
ganisms, including amphibians, and has been implicated
as a possible factor contributing to global declines and
range reductions in amphibian populations. Both lethal
and sublethal effects of UV-B exposure have been docu-
mented for many amphibian species at various life-histo-
ry stages. Some species, such as red legged frogs, Rana
aurora, appear to be resistant to current ambient levels
of UV-B, at least at the embryonic and larval stages, de-
spite the fact that they have experienced range reduc-
tions in the Willamette Valley of Oregon, USA. How-
ever, UV-B is lethal to embryonic and larval R. aurora at
levels slightly above those currently experienced during
development. Therefore, we predicted that exposure of
embryos to ambient UV-B radiation would result in sub-
lethal effects on larval growth and development. We test-
ed this by exposing R. aurora embryos to ambient UV-B
in the field and then raising individuals in the laboratory
for 1 month after hatching. Larvae that were exposed to
UV-B as embryos were smaller and less developed than
the non-exposed individuals 1 month post-hatching.
These types of sublethal effects of UV-B exposure indi-
cate that current levels of UV-B could already be influ-
encing amphibian development.
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Introduction

Ultraviolet-B radiation (UV-B; 280–320 nm) as an im-
portant abiotic factor for both terrestrial and aquatic or-
ganisms has received more attention with predictions of
increasing UV-B at the Earth’s surface due to strato-

spheric ozone depletion (Tevini 1993; Hader et al. 1995;
Hader 1997). Indeed, exposure to UV-B has been sug-
gested as contributing to at least two major biodiversity
crises in recent decades: bleaching events of coral reefs
(e.g. Shick et al. 1996; Lyons et al. 1998) and worldwide
amphibian population declines (e.g. Blaustein et al.
1998; Alford and Richards 1999). For amphibians, this
has prompted research on the effects of UV-B exposure
on embryonic and larval amphibians (Blaustein et al.
1998). As would be expected for any abiotic factor, tests
on embryonic amphibians demonstrate that species 
vary in their sensitivity to UV-B. Even within a given
geographic location, embryos of some species experi-
ence increased mortality in response to UV-B exposure,
while others appear unaffected (e.g. Blaustein et al.
1994; Anzalone et al. 1998; Lizana and Pedraza 1998;
Langhelle et al. 1999; Broomhall et al. 2000).

In Oregon, USA, red-legged frogs, Rana aurora,
have disappeared over much of their historic range (see 
Kiesecker and Blaustein 1998), but R. aurora embryos
and larvae do not experience increased mortality in the
presence of ambient UV-B (Blaustein et al. 1996; 
Ovaska et al. 1997). However, Ovaska et al. (1997) ob-
served decreased embryonic and larval survivorship at
slightly enhanced UV-B levels. Mortality at enhanced
levels implies that there is a specific physiological 
UV-B tolerance limit for this species. Even though cur-
rent ambient levels are not sufficient to induce mortali-
ty, it could be energetically costly for R. aurora em-
bryos exposed to UV-B to resist or repair potential 
cellular damage.

Because R. aurora egg masses are often laid at the
surface of the water in direct sunlight, the embryos may
receive relatively high doses of UV-B, compared to lar-
vae or adults which may move away from sunlight. In
addition, R. aurora embryonic development tends to be
prolonged because R. aurora breeds in winter at the 
Oregon coast, when water temperatures are low. (Early
R. aurora embryos have the lowest known temperature
tolerance of the North American ranid frogs (4–21°C),
Nussbaum et al. 1983) Thus, embryos can potentially be
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exposed to higher cumulative doses of UV-B than spe-
cies with short times to hatching.

As UV-B is lethal to embryonic and larval R. aurora
at levels slightly above ambient (Ovaska et al. 1997), we
hypothesized that exposure of embryos to ambient levels
of UV-B radiation would result in larvae that were less
developed than the non-exposed individuals. These types
of sublethal effects, which cross life-history stages, have
not been well investigated and could impact the long-
term survival of many amphibian populations. We tested
our hypothesis by exposing R. aurora embryos to ambi-
ent UV-B radiation in the field and then rearing individu-
al tadpoles for 1 month after hatching in the laboratory.

Materials and methods

In December 1999, we collected six fresh R. aurora egg masses
from a pond 10 km south of Waldport, Oregon. Later that day, we
set up 8 containers in the laboratory with 5 eggs from each of 6 of
the masses (30 eggs/container). All eggs were at Gosner stages
2–6 (Gosner 1960). The containers were left in the laboratory
overnight and the following morning were transported to outdoor
mesocosms located in an open field at the Salmon Disease Labora-
tory of Oregon State University. Mesocosms consisted of 8 large
plastic tubs (110 cm diameter, 25 cm deep) filled with well water.
Within each mesocosm, we placed the eggs in a wood framed en-
closure [80 cm×80 cm×10 cm (depth)] with mesh sides and bot-
tom. Four of these were randomly assigned to a UV-B blocking re-
gime (mylar filter) and the other four received an acetate filter,
which allows approximately 80% of the UV-B to pass (Blaustein
et al. 1994). No adverse effects of enclosure materials (e.g. mylar,
acetate) have been observed in previous field experiments (e.g.
Blaustein et al. 1994, 1996; Kiesecker et al. 2001). Mylar and ace-
tate filters were placed over the appropriate wooden enclosures
and were stapled to the edges of the frame, such that filters were
3 cm above the surface of the water. We measured temperatures in
all 8 enclosures at noon on 5 separate days during the experiment.
In addition, temperature data loggers (Hobo loggers, Onset Com-
puter, Bourne, Mass., USA) that recorded water temperature every
hour for the duration of the experiment were placed in a single ac-
etate and a single mylar enclosure. Eggs were checked for mortali-
ty and were counted every 1–2 days, and always following freez-
ing night-time temperatures. If ice was present on the enclosures,
it was broken up and removed. UV-B readings were taken at the
site between 1200 and 1300 hours on 15 different days with differ-
ing weather conditions to gain an estimate of the range of expo-
sure these larvae were receiving. These were done both in the air
to obtain an ambient measurement and under all 8 filters. All mea-
surements of UV-B were done using a hand-held Solar Light me-
ter with a UV-B probe (meter model PMA2100; UV-B detector
model PMA2102; Solar Light, Philadelphia, Pa., USA). The de-
tector provides output that is weighted for biological effect based
on the human erythemal ation spectra, with an irradiance peak at
297 nm.

After 6 weeks of exposure, when all embryos were nearing
hatching (Gosner stages 19–21, Gosner 1960), all of them were
collected and returned to the laboratory. They were set up by me-
socosm (8 groups) in plastic tubs and the total number hatched
was recorded each day. All embryos had hatched (or were dead)
within 5 days of being brought into the laboratory. Three days 
after they were all hatched, 15 individuals from each group were
randomly selected and placed in individual 550 ml plastic contain-
ers filled with 350 ml of dechlorinated tap water. Containers were
placed in random order on a lab bench in a 10×12 container grid.
Every day, we removed waste products and uneaten food from all
120 containers and changed half of the water. Tadpoles were fed a
3:1 mixture of ground rabbit chow:Tetramin fish food daily, so
that food was always available to them. After 2 weeks, all contain-

ers were completely cleaned and refilled with dechlorinated tap
water. After 1 month, we recorded mass and developmental stage
(per Gosner 1960) for all 120 individuals.

Analysis was done using MANOVA with the multivariate re-
sponse of stage and mass on UV-B treatment. We used means
from the original 8 rearing groups in our analysis. Mean tempera-
tures in mylar versus acetate enclosures on our 5 days of tempera-
ture recording were compared using a paired t-test.

Results

Survival to hatching was high in all treatments (mylar=
93.3%, 96.7%, 100%, 100%; acetate=90%, 93.3%,
96.7%, 100%) with no difference between the two
groups (Student’s t-test; P=0.388). There was no mortali-
ty during the laboratory portion of the study. However,
after 1 month, tadpoles that were not exposed to UV-B in
the field as embryos were larger and more developed
than individuals that were exposed as embryos (overall
MANOVA for UV-B treatment effects, P=0.04; Table 1,
Fig. 1). UV-B at the field site ranged from 0 µW/cm2

while it was actively raining and overcast to 1.28–
1.55 µW/cm2 on clear sunny days. UV-B was undetect-
able under the mylar filters, and under acetate filters on
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Table 1 Results of MANOVA for overall effects of embryonic
UV-B exposure on stage and mass of Rana aurora tadpoles
1 month after hatching, and ANOVAs for each response variable

F df P

MANOVA
Constant 310,175.3 2, 5 <0.001
UV treatment 6.546 2, 5 0.04

ANOVAs
Stage 15.074 1, 6 0.008
Mass 10.352 1, 6 0.018

Fig. 1 Mean (±SE) mass (g) and developmental stage (Gosner
1960) of Rana aurora larvae 1 month after embryonic UV-B expo-
sure in the field. Black bars represent exposed larvae. White bars
represent larvae that were shielded from UV-B as embryos



clear days, levels ranged from 1.02 to 1.29 µW/cm2. The
maximum difference between the four acetate filters on
any given day was 0.03 µW/cm2. There were no temper-
ature differences between the mylar and acetate enclo-
sures (paired t-test; P=0.492; Fig. 2). 

Discussion

Although R. aurora embryos have relatively high levels
of the photorepair enzyme, photolyase (Blaustein et al.
1996), and do not experience greater mortality when ex-
posed to ambient UV-B (Blaustein et al. 1996; Ovaska 
et al. 1997), our results suggest that there may be some
energetic cost associated with UV-B exposure. In addi-
tion, our study demonstrates that UV-B exposure of em-
bryos can have lasting effects on the larvae, at least up to
1 month post-hatching. Similar results have recently
been documented for plains leopard frogs, R. blairi
(Smith et al. 2000) and for common frogs, R. temporaria
(Pahkala et al. 2001). Even though larvae may be able 
to behaviorally avoid UV-B (e.g. van de Mortel and
Buttemer 1998) individuals exposed as embryos may 
already be at a disadvantage by the time they are able to
escape from high UV-B environments. Indeed, size and
rate of growth can be very important for larval anurans.
Larger tadpoles may be better competitors (e.g. Travis
1980) may be more likely to attain the size threshold
necessary for metamorphosis prior to pond drying (e.g.
Wilbur and Collins 1973; Morey and Reznick 2000) and
may be better able to avoid or ignore gape-limited preda-
tors (e.g. Puttlitz et al. 1999; Eklov 2000). In addition,
larger larvae generally become larger metamorphic anu-
rans which can have positive consequences for adult fit-
ness (e.g. Smith 1987; Bervin 1990).

Other studies have documented growth effects on 
amphibians exposed to UV-B (e.g. Belden et al. 2000; 
Pahkala et al. 2000), but few have examined the effects of
embryonic exposure on later stages. However, it is not sur-
prising that the embryonic environment can have an influ-
ence on individuals at later life stages. This has been dem-
onstrated for many animal groups, including mammals (e.g.
Anisman et al. 1998), fish (e.g. McCormick 1998), reptiles
(e.g. Shine et al. 1997) and amphibians (Watkins 2000).

In addition, various factors, such as the presence of
predator cues in the environment (Sih and Moore 1993;
Warkentin 1995), can alter the time to and size at hatch-
ing of embryonic amphibians. Changes in the size at
hatching are likely to have effects similar to those that
we observed. It may be the case that the changes we ob-
served were already present at hatching and were still
apparent 1 month later in the larvae. As amphibian em-
bryos are generally exposed directly to the environment
during development and lack a protective shell, there is 
a good chance that many abiotic factors could have a
major influence on developmental traits.

As we have demonstrated, regulating or avoiding ex-
posure to biologically damaging UV-B radiation can be
important for amphibians. This is also true for other
aquatic organisms, and may become increasingly impor-
tant with predictions of escalating UV-B levels at the
Earth’s surface due to stratospheric ozone depletion.
However, in addition to ozone depletion, which will re-
sult in increases in UV-B in both terrestrial and aquatic
environments, there are other factors that will alter the
levels of UV-B exposure for aquatic organisms. For 
example, acidification of lakes and ponds results in de-
creased dissolved organic carbons in the water and there-
fore increased penetrance of UV-B in the water column
(Schindler et al. 1996; Yan et al. 1996). Also, changes in
hydrologic cycles that may occur with global climate
change can be expected to alter water depth and availabil-
ity (e.g. Schindler et al. 1996; Yan et al. 1996; Pounds 
et al. 1999; Pienitz and Vincent 2000; Kiesecker et al.
2001), which could increase the UV-B exposure received
by aquatic organisms. Factors such as these may be as
important as ozone depletion for regulating UV-B expo-
sure of aquatic organisms in the future (e.g. Schindler 
et al. 1996; Pienitz and Vincent 2000). However, our
study demonstrates that even at current levels, UV-B can
influence amphibian development and is potentially 
already shaping life histories of aquatic organisms.
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Fig. 2 Temperatures (°C) over the course of the field exposure for
a single mylar (● ) and acetate (●● ) enclosure. Dots represent tem-
peratures every 12 h, starting at midnight of the first day. Statisti-
cal analysis for temperature was not performed on these data, but
on means for the four acetate and four mylar enclosures taken at
noon on 5 different days
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