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Abstract: Numerous factors are contributing to the loss of biodiversity. These include complex
effects of multiple abiotic and biotic stressors that may drive population losses. These losses are
especially illustrated by amphibians, whose populations are declining worldwide. The causes of
amphibian population declines are multifaceted and context-dependent. One major factor affecting
amphibian populations is emerging infectious disease. Several pathogens and their associated
diseases are especially significant contributors to amphibian population declines. These include
the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review,
we assess the effects of these three pathogens on amphibian hosts as found through experimental
studies. Such studies offer valuable insights to the causal factors underpinning broad patterns
reported through observational studies. We summarize key findings from experimental studies
in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore
the interactive effects of these pathogens with other contributors of amphibian population declines.
Though well-designed experimental studies are critical for understanding the impacts of disease,
inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions.
Studies of the three pathogens we focus on show that host susceptibility varies with such factors as
species, host age, life history stage, population and biotic (e.g., presence of competitors, predators)
and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of
the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing
standard protocols and reporting for experimental studies of amphibian disease.

Keywords: amphibian population declines; experiments; pathogens; Batrachochytrium; ranavirus

1. Introduction

Rapid rates of biodiversity loss have supported the notion that the Earth is heading toward a sixth
major extinction event [1–3]. Current species extinction rates are higher than pre-human background
rates, suggesting this biodiversity crisis is largely attributed to anthropogenic changes [1–6]. Although
numerous species from all taxonomic groups are affected, amphibians are at the forefront of this
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crisis [3,7,8]. Their populations are declining more rapidly than those of birds or mammals [8]. Like
other groups, amphibians are affected by multiple factors contributing to population declines [9].
These include habitat destruction, contaminants, climate change, over-harvesting, invasive species,
predation, and infectious diseases, all of which may work independently or synergistically to affect
amphibian populations [9–12] (Figure 1). Some of the research we summarize below focused on how
a particular pathogen alone affects a host, whereas some studies addressed how a pathogen may be
affected by other variables that may interact with pathogens.
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Figure 1. Potential abiotic and biotic factors that may influence host–pathogen dynamics in amphibian
disease systems.

Among the major threats to amphibians are emerging infectious diseases (EIDs). Several
prominent pathogens and associated EIDs affect amphibian populations worldwide. Batrachochytrium
dendrobatidis (hereafter referred to as Bd) is a pathogenic fungus that causes amphibian
chytridiomycosis [13–15]. This disease can cause population declines, local extinctions and contribute
to species extinctions [8,16,17]. A related yet highly divergent fungal pathogen that also causes
amphibian chytridiomycosis, Batrachochytrium salamandrivorans (hereafter referred to as Bsal), is
a newly discovered pathogen primarily infecting salamanders [18]. Iridoviruses of the genus
Ranavirus (hereafter referred to as Rv) have been implicated in declines and mass mortalities of
amphibians [19–23]. Teacher et al. [22] stated that populations can respond differently to the
virus and emergence can be transient, catastrophic, or persistent with recurrent mortality events.
Although amphibians are hosts to an assortment of pathogens/parasites, including bacteria, viruses,
fungi, water molds and helminths [13,24–27], we focus on Bd, Bsal and Rv, given accumulating
evidence of their potentially devastating effects on amphibian populations worldwide. In particular,
we focus on reviewing the literature that report the results of experiments (manipulation of key
variables [28]) conducted with Bd, Bsal, and Rv concentrating on papers that used live amphibian
hosts. Given the complexity of these host–pathogen systems, experimental approaches are crucial for
disentangling potential mechanisms driving patterns of transmission and examining variation in lethal
and sublethal effects due to host species, host life-history traits, pathogen strain, host populations, and
environmental conditions.

Prior to 2009, relatively few studies of amphibian diseases employed standard experimental
designs [28] (Figure 2). Since 2009, there has been a surge in the use of experiments to determine how
diseases affect amphibians. Experimental design, methods, and interpretation vary; thus, it is useful to
summarize these aspects to assess generality. One problem with experimental work on amphibian
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diseases has been the lack of standardization in experimental methods. Here, we present a synthesis of
experimental studies and attempt to address some of the issues regarding the lack of standardization
and difficulties in generalizing about the dynamics of the host–pathogen systems we focus on.
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Summary of Pathogen Life Histories

Batrachochytrium dendrobatidis

First described by Longcore et al. [29], Bd is a fungal species in the phylum Chytridiomycota that
has multiple hosts on every continent where amphibians exist [15,16] and has been associated with
numerous population declines and some extinctions [30–32]. Recent evidence suggests that that the
source of Bd was traced to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic
hallmarks of an ancestral population that seeded the panzootic emergence [33]. O’Hanlon et al. [33]
date the emergence of Bd to the early 20th century, coinciding with the global expansion of commercial
trade in amphibians.

Bd has a complex life cycle that consists of a free-living infectious aquatic zoospore stage and a
non-motile zoosporangium stage. Motile zoospores are chemically attracted to keratin in amphibian
host, such as keratinized larval jaw sheaths or keratinized epidermal layers of adult amphibian
skin [34,35]. Infection can lead to hyperkeratosis and hyperplasia of the dermal layer, erosions and
ulcerations of the skin, and disruption of the epidermal cell cycle [30,34–37]. The inability to regulate
ions through the skin may lead to cardiac arrest [38]. Clinical signs of chytridiomycosis include
lethargy, lack of appetite, abnormal posture, loss of righting reflex, cutaneous erythema, and increased
skin sloughing [37]. However, not all infected animals are symptomatic when infected. Once within
the host, the zoosporangia mature and develop pathogenic zoospores that are released outside the
host into the aquatic environment.

Batrachochytrium salamandrivorans

The recent isolation and characterization of the fungal pathogen, Bsal may explain some
amphibian population declines. For instance, the drastic decline of fire salamanders, Salamandra
salamandra, in the Netherlands, Germany, and Belgium, has been linked to Bsal [39–41]. A study
conducted by Martel et al. [42] proposed Bsal originated in East Asia and coexisted with salamanders
there for millions of years. The introduction of Bsal to Europe is hypothesized to have occurred due
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to a lack of biosecurity in the international pet trade [42]. Although Bd and Bsal infections result in
lethal skin erosion, the pathogenic mechanism of Bsal is not well understood. Bsal produces motile
zoospores, contain colonial thalli, and produce germination tubes in vitro [18]. Studies have assessed
the presence of Bsal in various amphibian populations in North America (e.g., [43–45]) and China [46]
utilizing several methods (phalanges histology, nested PCR, qPCR and duplex qPCR), but its presence
has yet to be confirmed in those populations. Given its high lethality, increased field surveillance of
these naïve populations will be critical to contain the potential spread of this newly isolated pathogen,
particularly in North America, a global biodiversity hotspot for salamanders [47–50].

Ranavirus

Rvs are a group of large double-stranded DNA viruses in the family Iridoviridae with fish, reptile,
and amphibian hosts [51]. The first Rv were isolated from Lithobates pipiens in 1965 [52]. The Global
Ranavirus Reporting System (https://mantle.io/grrs/map), created to aid in tracking Rv occurrences
and studies, shows Rv to be fairly widespread in Canada and the US west of the Rocky Mountains.
This tool is intended to facilitate communication among researchers concerning Rv detection and to
accelerate research and management of the disease threat.

The genus Rv is composed of 6 identified viral species, three of which infect amphibians
(Ambystoma tigrinum virus (ATV), Bohle iridovirus (BIV), and Frog Virus 3 (FV3)) [51]. Although
the effects of Rv are well documented, little is known about the genetic basis for virulence across
isolates [53]. FV3 and ATV infect many amphibian species, but these isolates are most virulent within
the anurans and urodelans, respectively, from which they were isolated [54]. Laboratory experiments
have shown that introduced Rv isolates may be significantly more virulent than endemic strains [55].

Amphibians become infected with Rv by physical contact, dermal exposure to contaminated
water, or direct ingestion of virions [56,57]. Infection can occur in as short as a one second of direct
contact with an infected individual of the same species [56] or 3 h of contact with contaminated
water [58]. Empirical studies confirming its potential effects in amphibians are limited [56,59–61].
Fish can also be infected with Rv, but susceptibility to Rv in fishes appears to be low, though there is
potential for fish to transfer Rv to amphibians in habitats where they overlap [62,63].

Rvs infections can cause cell apoptosis and tissue necrosis within a few hours [51,64]. Common
indicators of Rv infection include erratic swimming, lethargy, erythema, skin sloughing, loss of
pigmentation, lordosis (excessive inward curvature of the spine), and ulcerations [65,66]. Lesions
and hemorrhages associated with fatal cases of Rv occur in internal organs, particularly the liver,
kidney, intestine, spleen, and reproductive organs [25,67,68]. However, the precise mechanisms of Rv
dissemination within the host are relatively unclear, especially at the earliest stages of infection. A
recent study demonstrated that FV3 infection is capable of altering the blood brain barrier in Xenopus
laevis tadpoles eventually, leading to Rv dissemination into the central nervous system [69]. Death can
occur without external signs of infection [70].

2. Methods

The effects of Bd, Bsal, and Rv found in experimental studies are summarized in Table 1. Our
search was conducted via the Web of Science and supplemented with a Google Scholar search using
the keywords “Batrachochytrium dendrobatidis + amphibians”, “Batrachochytrium salamandrivorans +
amphibians”, and “Ranavirus + amphibians”, respectively. Duplicates and non-experimental studies
were removed and the remaining studies were documented. Studies that examined interactive effects
(i.e., pesticide + pathogen) were included, but only the effect of the pathogen independently was
reported. The Bd search (1999–2017) resulted in 1207 hits, of which 110 were experimental studies.
The Bsal search resulted in 41 hits, of which 5 were experimental studies. The Rv search (1992–2017)
yielded 269 hits, of which 33 were experimental studies. If one publication examined multiple species
or host life stages, each species and life stage was reported separately (Figure 3).

https://mantle.io/grrs/map
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Figure 3. Trends in all articles published on Bd (top) and Rv (bottom) in the literature over time.
Publications were compiled using the search strings “Batrachochytrium dendrobatidis + amphibians” and
“ranavirus and amphibians” in the Web of Science database, from which duplicates and articles that
were unrelated were removed. The Bd search yielded a total of 1207 hits and the Rv search yielded
269 hits.

3. Results

Results from experimental studies are summarized below. We presented general trends across
studies according to the response variable (e.g., physiology, behavior) and/or source of response
variation (e.g., life stage, virus strain). We then focused on interactive effects and summarize the
experimental work with each pathogen in combination with natural or anthropogenic environmental
stressors. Below, we provide a summary of patterns and gaps in the accumulated experimental
work on host–pathogen dynamics of Bd, Bsal, and Rv and their amphibian hosts. Specific results of
experimental studies are detailed in Table 1 and data summarizing the number of papers published,
survivorship and life stages are summarized in Figures 4–6.

The number of experimental studies conducted on hosts at different life stages varied, with most
studies of Bd conducted in hosts after metamorphosis and most studies of Rv conducted with larvae
(Figure 4). The only experimental studies we found on Bsal were conducted with post-metamorphic
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hosts (Figure 4). Experimental studies and survival showed clear differences with host life stage
(Figures 5 and 6). Moreover, the dose of pathogen administered during susceptibility experiments is
also important in interpreting results (Figure 7).

3.1. Batrachochytrium dendrobatidis

Host–pathogen dynamics are influenced by many factors (Figure 1). For example, biotic variables,
such as the presence of predators, density of hosts and competition among pathogens, may affect
host susceptibility, mortality and pathogen loads [71–74]. Laboratory and field experiments have
shown that abiotic factors influencing Bd–host dynamics include climate, season, altitude, resource
availability, and temperature [75–77]. Experimental studies found dose-dependent differences in
development, infection load, and mortality, indicating increased infection virulence associated with
inoculum dose [74,78–80] (Figure 7). Experiments have confirmed temperature as a critical mediating
factor in Bd dynamics. For example, Andre et al. [75] found that host frogs housed in warmer
temperatures (22 ◦C) exhibited significantly lower mortality than those housed in cooler temperatures
(17 ◦C). Infection in post-metamorphic amphibians can be cleared when temperatures are elevated
above the noted Bd thermal optimum range [77,81–84].

Some experimental studies illustrate strain-dependent infection outcomes [15,34,80,85–88], while
other studies have revealed no effect associated with strain differences [89,90]. Whether or not
strain differences are detected can depend on the amphibian host species used in experiments [91].
Comparative strain experiments along with observational amphibian surveys are useful in
investigating the relationships between host population trends and Bd virulence variation. For
example, Piovia-Scott et al. [92] linked an observed Rana cascadae population decline to a known,
highly infectious, and lethal Bd strain through multiple lines of analyses. In one experiment, adult
Rana cascadae, exposed to the Bd strain cultured from a site undergoing a host population decline, had
significantly lower survival rates, compared to those exposed to a strain from a site with a stable host
population [92]. This Bd strain also displayed greater immunotoxicity in experimental assays [92].
Exposure to endemic vs. novel strains can also affect host survival. Doddington et al. [93] found
survival differences in captive-bred Alytes muletensis experimentally exposed to two Bd strains, a local
Mallorcan strain (TF5a1) or a hypervirulent Bd-GPL strain (UKTvB). Toads exposed to the Bd-GPL
strain had higher mortality than individuals exposed to the Mallorcan strain or control group [93].
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as an endpoint).

Differences in methodology can complicate our interpretation of the results from comparative
strain experiments. For example, Bd dosage, site of strain isolation, and strain passaging history can
influence outcomes of strain experiments [15,86–88,94–96].

Accumulating evidence suggests that some host species vary in their susceptibility to Bd. Some
species can persist with infection [97] and others experience mortality rapidly after Bd exposure [86,97–
100]. Variation in skin composition, including keratin abundance, distribution, and thickness, may
affect the depth, of the zoospore-produced germination tube which can affect the severity of infection
among amphibian hosts [35,101]. Differences in the ability of amphibian species to mount sufficient
endocrinological responses, particularly stress responses, may also play a role [102–105]. Furthermore,
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habitat preference may influence host susceptibility to infection [106,107]. Future research should
consider amphibian life-history traits, particularly of species that do not seem to be susceptible to Bd
infection, to better understand differences in host susceptibility and will be useful to target species,
which may act as reservoirs for the pathogen.
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we display the minimum, first quartile, median, third quartile, and maximum zoospore dose regarding
host survival.

An important driver of host–pathogen interactions is host behavior [72,108,109]. Basking, for
example, may be an indication of disease infection in amphibians [110–112]. Altered thermoregulatory
behavior (i.e., behavioral fever) may aid in clearing Bd infection. However, fever behavior depends
on species and life stage [108,113]. Additionally, it has been suggested that aggregation behaviors
can increase Bd prevalence. Thus, schooling species may be more at risk than amphibian species
with solitary life styles [109]. This prediction depends strongly on the assumption that infected hosts
shed infectious zoospores. Recent work shows that spillover infection does not occur in all hosts,
suggesting that aspects of life history (e.g., body size) and behavioral interactions (e.g., interspecific
competition) between hosts may drive infection severity in host communities [114]. Infected tadpoles
have demonstrated altered activity levels, which may be an important indicator of anti-predator
behavior [72,115]. While reduced activity can make tadpoles less visible and thus less at risk for
predation, sluggish behavior can hinder an individual’s ability to escape a predation event. Han et
al. [115] observed Bd-infected toad tadpoles seeking refuge more often than other species tested. Parris
et al. [72] demonstrated that when tadpoles were exposed to only visual predation cues, uninfected
individuals positioned themselves farther from the predator than infected animals. Carey et al. [99]
observed that post-metamorphic toads exposed to Bd were holding their bodies out of water more
than unexposed individuals. In one study, frogs that had never been exposed to Bd displayed no
significant avoidance or attraction to the pathogen, whereas previously infected frogs associated with
pathogen-free frogs a majority of the time [83]. This indication of potentially learned behavioral
avoidance to Bd and perhaps other pathogens warrants further exploration.
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Differences in Bd susceptibility are dependent on amphibian life stage, with juveniles and
adults usually being more susceptible than embryos and larvae, most likely due to increased keratin
distribution and abundance after the larval stage [80,116]. Bd infection in tadpoles rarely results in
mortality (see [15,86,98], but has generally been related to reduced foraging efficiency and food intake
in larvae [117–120]. In post-metamorphic amphibians, Bd infection is manifested in the keratinized
epidermis; thus, the effects of foraging efficiency are dependent on the locality of infection. For
example, in adult salamanders (Plethodon cinereus), Bd-infected individuals displayed increased
feeding behaviors in comparison with uninfected individuals, a behavioral modification that has
been suggested as a strategy to offset the costs associated with immune activation [121].

Body size may also be a factor in host susceptibility to pathogens [122]. Experiments have
shown that individual size may be an influential factor in Bd susceptibility [116]. Garner et al. [79]
showed that smaller toads (Anaxyrus boreas) were more prone to Bd-induced mortality compared with
larger individuals.

Experiments on host–Bd interactions have addressed physiological stress responses. In both field
and laboratory investigations, Bd significantly elevated physiological stress hormone (corticosterone)
levels in amphibian hosts of multiple species [102–104,123], though there is no evidence that exposure
to endogenous corticosterone alters amphibian susceptibility to Bd [104]. Different strains of Bd elicit
significantly distinctive hormonal stress responses from their hosts, with more virulent strains resulting
in higher corticosterone levels [123]. New methodologies, such as a non-invasive stress hormone
assay [102], enhance the value of field studies coupled with experimental laboratory investigations on
physiological stress response. The dynamics between stress response and chronic disease manifestation
warrant further exploration.

3.2. Batrachochytrium salamandrivorans

Due to its recent discovery, there are few experimental studies documenting the effects of Bsal on
amphibian hosts (Table 1b). Bsal primarily affects newts and salamanders rather than anurans. The
common midwife toad (Alytes obstetricans), a species susceptible to Bd, did not experience any clinical
signs of Bsal infection [18]. Further, Martel et al. [42] showed that ten anurans tested were resistant to
skin invasion, infection, and disease signs when exposed to a dose of 5000 zoospores of Bsal. Studies
conducted with Bsal on potential urodelan hosts demonstrated that responses varied across species
and within the same genus. Bsal induced lethal effects on Lissotriton italicus, the Italian newt, whereas
no infection or disease signs were documented in L. helveticus [42]. The results of Bsal–host experiments
show that Bd and Bsal differ in how they show the effects of exposure to these pathogens [18,42].
Experimentally infected fire salamanders, Salamandra salamandra, experienced ataxia, a rarely reported
sign in experimental studies with Bd. The study also identified three potential reservoir species, the
Japanese fire belly newt (Cynops pyrrhogaster), the Chuxiong fire-bellied newt (Hypselotriton cyanurus),
and the Tam Dao salamander (Paramesotriton deloustali), as individuals of these species were able to
persist with or clear infection in some capacity [42].

Bsal transmission dynamics are not yet well documented. In a study examining transmission
between infected and naïve hosts, Martel et al. [18] found that two days of shared housing in
salamanders resulted in infection and mortality of formerly naïve hosts within one month. All
experimental work done regarding Bsal has used only one pathogen isolate, a small range of doses,
and few source populations for each species tested (Table 1b). Because experiments conducted on
Bd–host dynamics show that responses are heavily dependent on species, population, pathogen isolate,
temperature, and exposure dose, future research should consider how these factors influence infection
dynamics in the Bsal system.

3.3. Ranavirus

Experimental studies have shed light onto the comprehensive effects of Rv on amphibians
worldwide (Figure 3; Table 1c). Experimental Rv mortality is influenced by a variety of factors most
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notably, exposure method. Ingestion of Rv infected carcasses result in infection transmission and
reduced survival [57,124]. Exposure to Rv via water induced variable rates of mortality, with most
studies showing slower rates of mortality when transmission occurred via water, compared to when it
occurred via ingestion [70,125]. Hoverman et al. [126] found that infection and mortality rates were
greater for tadpoles that were orally inoculated with Rv compared to those exposed via water bath.
Aggressive interactions may serve as an efficient transmission route of Rv [56]. Cannibalistic behavior
may be harmful to the individual exemplifying the behavior because of disease transmission, but
an experimental study showed cannibalism can result in decreased contact rates between naive and
infected individuals in the population [56]. Additionally, experiments have suggested that necrophagy
may serve as a common route of Rv transmission, shifting transmission from density-dependent to
frequency-dependent [56,57,124,127,128].

Temperature influences Rv infectivity and survival rates in hosts [129,130]. When exposed to the
Rv, ATV, larval Ambystoma tigrinum salamanders experienced higher survival rates when exposed at
26 ◦C than those exposed at 18 ◦C and 10 ◦C with virus titer being higher in cooler temperatures, and
viral replication rates were higher at higher temperatures [130]. Similarly, Echaubard et al. [129] found
that the probability of Rv infection increased at lower temperatures (14 ◦C), but that the effects were
isolate and species-dependent.

It is critical to take a comparative approach to experimentally investigate species variation in
susceptibility with regards to Rv. Understanding the relative susceptibility of hosts to a pathogen
is important for predicting host–pathogen dynamics. Coevolution between Rvs and their hosts has
been hypothesized to be a driving force behind host variation of susceptibility [131]. Hoverman et
al. [132] discovered a wide range of lethal effects among 19 larval amphibian species, which resulted
in mortality rates spanning from 0 to 100%. Their study showed that anurans in the family Ranidae
were typically more susceptible to Rv than the other five families tested.

Previous experimental work has demonstrated infection and virulence variation among isolates
and Rv species [54,125,132,133] though phenotypic variation among Rv isolates is not well understood.
Schock et al. [54] determined that FV3 and ATV Rv species vary in their ecology and restriction
endonuclease profiles, even though they have identical major capsid protein (MCP) gene sequences.
Their results further emphasize the importance of characterizing isolates beyond MCP sequence
analysis. Cunningham et al. [125] detected differences in tissue trophism and pathology between
two strains of FV3-like Rvs in common frogs (Rana temporaria). Schock et al. [133] revealed that ATV
strains differed in virulence, but this was dependent upon the origin of the salamander host. Similarly,
Hoverman et al. [132] showed that mortality rates were ~50% greater with a Rv isolate obtained
from an American bullfrog (Lithobates catesbeianus) culture facility compared to FV3. These results
highlight the importance of controlled experimental studies to elucidate patterns of differential host
susceptibility with regards to Rv isolates and species.

Experimental and observational field studies have shown that late-stage larvae that are nearing
metamorphosis are the most susceptible to lethal effects of Rv infection [60,61,105,134,135]. When
exposed to ATV, metamorphosed Ambystoma tigrinum larvae were five times less likely to be infected
than those that remained at the larval stage [70]. Experimental studies suggest that the effects of Rv
are more lethal to larvae than any other host life stage. In an experimental study examining seven
amphibian species at various developmental stages, Haislip et al. [136] observed that mortality and
infection prevalence were greatest at the hatchling and larval stages in four of the species tested
compared with frogs undergoing metamorphosis, and that the embryo was the least susceptible stage,
possibly due to the eggs protective membranous properties. Similarly to what has been observed
with Bd infections, life-stage variation in susceptibility has been attributed to changes that occur in
the hypothalamic–pituitary–interrenal axis (the central stress response system) around the time of
metamorphosis, which helps to mediate the immune system [137]. Host gene expression variation may
contribute to life-stage differences in susceptibility. Andino et al. [134] found that larvae experienced
greater infection rates and possessed lower and delayed expression of inflammation associated antiviral
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genes. It has been suggested that impacts of epizootic events may be underestimated due to increased
difficulty of detecting mass mortality of hatchings and larvae in the field [136].

Though few studies have examined host physiological responses to Rv, these studies are important
in assessing species-specific impacts of infection. Warne et al. [105] demonstrated tadpoles infected
with an FV3-like isolate had higher corticosterone relative to controls. In a study examining immune
function, Maniero et al. [138] demonstrated that Xenopus laevis frogs develop an effective and persistent
humoral immunity after exposure to FV3.

Interactive Effects of Disease, Anthropogenic, and Natural Stressors

Anthropogenic and natural environmental stressors can exacerbate the effects of emerging wildlife
diseases [14]. Though the impact of one factor may be particularly devastating to amphibians in
certain regions, considering simultaneous effects of several factors may be more realistic because
amphibians, like other organisms, are exposed to many abiotic and biotic factors simultaneously [9,139].
Host–pathogen relationships in amphibians are mediated by, for example, climate, contaminants,
disease, predation, and competition [9,15,79,140] (Figure 1). These factors display a high degree
of spatial and temporal variation and can result in complex local interactions that are often poorly
understood [9]. Realistic insight can be gained by taking a population-specific approach in assessing the
variables involved and overall status of a population using long-term field data [141]. Experimental
approaches can be particularly helpful in disentangling the mechanisms of interacting variables.
Gaining a comprehensive understanding of how environmental factors may influence infection and
pathology is critical to amphibian conservation.

Pathogens Climate and Atmospheric Change

Climate change and associated atmospheric changes may alter disease dynamics by fostering
conditions more or less hospitable for pathogens and their hosts. For example, different outcomes have
been reported regarding the interaction of ultraviolet-B (UV-B) radiation and pathogens. A modeling
approach by Williamson [142] suggests that the selective absorption of ultraviolet radiation by
dissolved organic matter (DOM) decreases the valuable ecosystem service wherein sunlight inactivates
waterborne pathogens. In controlled experiments, Overholt et al. [143] showed that low levels of UVR
(as well as longer-wavelength light) sharply reduced the infectivity of parasitic fungal spores, but
did not affect host (Daphnia) susceptibility to infection. However, a field experiment showed that
fluctuations in water depth were associated with increased UV-B radiation, which resulted in greater
sensitivity to the pathogenic water mold, Saprolegnia [139]. Experimental studies regarding the effects
of UV-B radiation and Rv are absent from the literature. However, decreased pond depth has been
associated with increased Rv prevalence [63], which suggests the possibility that water depth and UV-B
penetration may affect Rv–host dynamics, as Kiesecker et al. [139] showed for Saprolegnia–amphibian
interactions. In a laboratory experiment, no interaction was found with increased UV-B radiation and
Bd [144,145]. However, Ortiz-Santaliestra et al. [146] showed that Bd loads were significantly lower
in tadpoles exposed to environmental UV-B intensities than in tadpoles not exposed to the radiation.
Another field experiment showed that ultraviolet radiation (UVR) killed the free-living infectious stage
of Bd. However, permanent ponds with more UVR exposure had higher infection prevalence [147].
The authors suggested that UVR reduced the density of Bd predators and that permanent sites fostered
multi-season host larvae that fueled parasite production.

Global climate change appears to increase temperature variability, which can mediate disease
dynamics. Bosch et al. [148] documented rising temperatures are linked to the occurrence of
chytridiomycosis. Fluctuating temperature regimes have had negative effects on survival and
development of amphibians in the presence of Bd [149–151], while higher temperatures often
resulted in higher host survival rates [78,152]. Raffel et al. [150] demonstrated that Bd growth and
infection-induced mortality on newts, Notophthalmus viridescens, was greater following a shift to a
new cooler temperature, but this was dependent on increased soil moisture. Host thermal acclimation
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is context-dependent and can serve as a key mediator of climate–disease dynamics. Recent models
based on the Intergovernmental Panel on Climate Change (IPCC) suggest that Bd will shift into higher
latitudes and altitudes due to increased environmental suitability in regions under predicted climate
change [153]. Specifically, these models predicted a broad expansion of areas suitable for establishment
of Bd on amphibian hosts in temperate zones of the Northern Hemisphere. Thus, novel amphibian
hosts may be susceptible to predictable shifts in Bd.

Pathogens and Contaminants

Many contaminants break down quickly in the environment, yet exposure can have major carry
over effects, and the effects of interactions between multiple contaminants and between contaminants
and disease cannot be well understood without experimentation [154,155]. Contaminant exposure may
contribute to amphibian population declines directly or indirectly [9,156–158]. However, research on
the interactive effects of contaminants and pathogens remains inconclusive. Some studies examining
this interaction investigate if pesticides and contaminants play a role in decreasing amphibian immune
response, rendering amphibians more susceptible to infectious disease [159–161]. However, few
experimental studies support this hypothesis [118,162–172]. Rohr et al. [173] found that early-life
exposure to atrazine decreased survival post-metamorphosis when combined with Bd in Osteopilus
septentrionalis. Likewise, Buck et al. [163] demonstrated that exposure to pesticides in tadpoles resulted
in higher Bd loads and increased mortality in post-metamorphic individuals from three species, but
not for two other species. A possible reason for findings with little or no interactive effects may be
that certain compounds can inhibit or diminish the growth or integrity of Bd, as was demonstrated
outside of the host species [162,167,170]. Thus, contaminants may have direct negative effects on both
amphibian hosts and Bd, which can lead to no differences in infection across a range of contamination.

The use of pesticides has been associated with increased Rv prevalence in the field [63]. Forson
and Storfer [174] revealed that ecologically relevant levels of the pesticide atrazine and the fertilizer
sodium nitrate significantly decreased Ambystoma tigrinum larvae peripheral leukocyte levels and
that larvae exposed to atrazine significantly increased susceptibility to ATV. Furthermore, Kerby
and Storfer [175] showed that atrazine and Rv exposure marginally decreased survival in larvae of
the same species. Conversely, Forson and Storfer [174] revealed Ambystoma macrodactylum larvae
exposed to atrazine and ATV had lower mortality levels and ATV infectivity compared to larvae
exposed to ATV alone, suggesting atrazine may compromise virus integrity. Additional research
is needed to assess the impacts of pesticides and fertilizers and their metabolites on Rv viability
and amphibian physiology. Contaminants are becoming increasingly widespread with over 50% of
detected insecticide concentrations exceeding regulatory thresholds [176]. Thus, the importance of
researching the interrelationships between contaminants and disease in amphibian disease should not
be overlooked. Experiments designed to identify mechanisms that are generalizable across classes of
pesticides will also enable better management and conservation planning, as known contaminants are
phased out and new ones are introduced to market.

Pathogens and Community Composition

Higher biodiversity may influence disease risk through a variety of mechanisms. The dilution
effect hypothesizes that greater biodiversity in an assemblage decreases disease risk, but this is
somewhat controversial [177–179]. Olson et al. [16] reported a negative association between Bd
occurrence and species richness. Some experimental evidence supports the dilution effect in the
Bd–host system. Greater species diversity of larvae resulted in lower Bd zoospore abundance [100,180–
182]. Searle et al. [100] demonstrated that the experimental addition of Rana cascadae tadpoles to tanks
with larval toads (Anaxyrus boreas) decreased the infection risk for toad larvae, which may be due to
differing feeding strategies and life-history traits between species.

Venesky et al. [183] showed that some tadpoles can filter feed Bd zoospores. Moreover,
experiments have shown that zooplankton, such as Daphnia, can consume Bd zoospores, significantly
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reducing infection probabilities in tadpoles [184–186]. Additionally, species “reservoirs” may be
important for community-level Bd dynamics. For example, evidence suggests the Pacific treefrog,
Pseudacris regilla, may act as a Bd reservoir; P. regilla thrive and occupy 100% of study sites where a
sympatric species has been extirpated by Bd [101].

Predation can interact with infection in varying ways. The healthy herd hypothesis states that
predators may decrease infection prevalence by decreasing overall population size of potential hosts
and through selective predation upon infected individuals [187–189]. Several hypotheses regarding
predator/prey dynamics and disease remain untested regarding disease and amphibians. For example,
is selective predation occurring, or alternatively, are predators capable of avoiding infected prey?
Han et al. [115] experimentally demonstrated the potential of non-selective predation occurring in
the predator/prey interactions in the Bd system. Salamander predators consumed Bd-infected and
uninfected tadpoles at the same frequency and predation risk among prey was not altered by Bd
infection. This area warrants further exploration as predation behavior may have significant impact on
outcomes in amphibian disease systems. The presence of a predator resulted in decreased infection
loads in wood frog (Lithobates sylvaticus) larvae [190] and has resulted in increased developmental
rates [162,191]. Effects of predation in combination with Rv remain inconclusive. Dragonfly predator
cues have resulted in decreased survival in combination with Rv exposure [192]. However, Haislip et
al. [193] found no evidence that Rv exposure in combination with predator cues increased mortality
across four species of larval anurans.

In addition to predator presence, other aspects of community composition can play an influential
role in disease dynamics. When reared in higher densities, amphibians metamorphose at smaller
body masses than when reared individually [194,195]. Furthermore, when these higher densities were
combined with the presence of Bd, larvae also experienced a delayed time of metamorphosis [194,195].
Increased densities have also been associated with the increased likelihood of Bd infection [196], but
other experimental studies have not observed this association [100]. These results are in direct contrast
with the effects of density with regards to Rv. At higher densities of larvae and in the presence of Rv,
the rate of metamorphosis was documented to be three times faster and the probability of mortality
was five times lower than in the controls [197]. However, even though higher densities lead to higher
contact rates, transmission of Rv rapidly saturates as density increases [198].

Coinfection Dynamics

Infection by multiple pathogens is common for most wild animals [199], though experimental
evidence of coinfection patterns in amphibians remain sparse. Several studies have investigated
coinfection dynamics in amphibian hosts in the field and have found that coinfections in amphibians
is common [132,200–202]. However, there are few experimental studies of coinfection dynamics in
amphibians. Romansic et al. [74] experimentally investigated the effects of three pathogens: Bd,
the trematode Ribeiroia sp., and the water mold, Achyla flagellata, which resulted in little evidence
for interactive effects. Wuerthner et al. [203] found that prior infection with trematode parasites
(Echinoparyphium sp.) reduced ranavirus loads and increased survival of Rv-infected frogs. Thus, the
interrelationships of coinfection could be explored further via experiments.

Host, Isolate, and Geographic Biases

Uneven sampling of host species is considered to be a source of bias when interpreting the
dynamics of host–parasite systems [204]. There are 7728 amphibian species described [205], yet our
analysis of experimental studies documenting the effects of these pathogens have only reported effects
for <1% of species across these pathogens (0.01% of species with regard to Bd, 0.005% of species for
Bsal, and 0.005% of species with regard to Rv). Of the species studied in these disease systems, there
is a high degree of interspecific variation in disease susceptibility [80,86,97,98,100,132]. Furthermore,
responses can vary based on strain, population, and host life-stage [54,56,70,88,98,124,133,206–208].
Additionally, a distinct disparity exists in species-studied and geographic regions (Figure 8). Much of
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the research has focused primarily on host species located in Europe, North America, and Australia.
However, Bd and Rv have global distribution and effects, yet far less is known about infection in
hosts from Africa, Asia, and South America. For Bsal, experiments have only been conducted with an
isolate from Europe, and most studies have used a dose of 5000 zoospores, a low dose in comparison to
studies on Bd [80]. Similarly, the bulk of the studies examining Rv pathogen–host dynamics are largely
biased toward those in North America, with a minority of studies coming out of Europe, Africa, and
Australia (Table 1). These biases are likely due to the number of researchers in these regions, institution
locality, and access to collaborators, species, isolates, feasibility and cost.

Non-Standard Methods and Reporting

Experimentation is advantageous because it is repeatable, and well-designed studies can provide
unequivocal results [209,210]. However, there are limitations on experimental work, as is illustrated in
amphibian disease ecology. One problem with experimental work on amphibian diseases has been
the lack of standardization in experimental methods. Kilpatrick et al. [87] highlighted the importance
of standardizing and reporting all relevant infection protocols within and between species when
conducting laboratory studies regarding Bd and its host species. This includes how individuals are
collected for experiments, how they are reared, the developmental stage in which they are tested,
the population origin, inoculation and exposure protocols, and strains of pathogen being used. For
instance, reporting and standardizing the zoospore exposure concentration (total number of zoospores
per mL of water in total volume of water) in experimental procedures would make relative species
comparisons among experiments more useful. Developmental stage should always be reported as
this can also confound the interpretation of results. Additionally, whether hosts are reared from eggs
or caught as larvae, juveniles, or adults, or even bought from supply houses can dramatically alter
the results of experiments and their interpretation. Our analysis shows that, 27%, 12%, and 23% of
experiments examining Bd, Bsal, and Rv, respectively, were using animals not reared from eggs, even
though rearing amphibians from eggs ensures that individuals have not previously been infected with
Bd or Bsal. Even when tested for current infection prior to an experiment, wild-caught individuals
have different ecological histories and may have a more or less robust immune system depending
upon whether they were previously exposed to a particular pathogen [86]. Field surveillance shows
that amphibian parasites, such as echinostomes, are widespread [211,212] and essentially many, if not
all individuals, collected from the wild will inevitably possess trematodes. The potential influence of
these parasites on amphibian immunological response poses a serious problem for experiments that
use individuals, not reared as eggs.

We emphasized the importance of utilizing subjects raised from the embryo stage in experimental
investigations. Because of lack of standardization, each experiment must be taken independently and
applied to those specific individuals at the reported experimental conditions. When protocols are
standardized, we can more easily generalize effects of Bd and Rv on hosts, as has been accomplished
in several studies [80,97,98,100,132]. However, even in experimental studies that have standardized
methods, interpretation of results must be in context with, for example, the knowledge that the results
of susceptibility to a particular pathogen may vary with host age, life history stage, population, the
presence of abiotic factors (e.g., contaminants), biotic factors (e.g., competitors, predators), pathogen
strain etc.

Experimental studies using different methods for the same host species illustrate the difficulties in
making generalizations of how specific pathogens affect a host. For example, western toads (Anaxyrus
boreas) have been investigated in a number of experimental studies (Table 1a). These studies used
different Bd strains, different Bd doses and different life stages and the results of how the host
was affected differed among the studies. For example, some studies showed reduced survival after
exposure to Bd, whereas others did not. Even experiments by the same investigators [108,115] on
western toads showed certain differences in how toads responded to Bd. In these studies, western
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toads were examined at the same life stage, but each study used different Bd strains and different
Bd doses.

Small differences in experimental methods and design can lead to different results, highlighting
the importance of standardized experimental protocols. Importantly, under controlled environmental
conditions, observed effects after pathogen exposure can be attributed to intrinsic biological factors of
the host, rather than environmental differences [206].Diversity 2018, 10, x FOR PEER REVIEW  15 of 48 
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4. Conclusions

The initial sounding of the alarm for amphibian population declines in the 1990s [213] prompted
a multitude of interdisciplinary investigations focused on understanding the causes of the declines. As
part of this interdisciplinary approach, field observations along with well-designed experiments have
helped us more fully understand the dynamics of amphibian population declines [214]. Because
disease is one of the key factors contributing to amphibian population declines, experiments
have been especially useful in aiding our understanding of amphibian host–pathogen dynamics.
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Well-designed experiments are useful tools that can provide unambiguous answers to specific
questions about host–pathogen interactions. Several types of experiments have been employed. Field
experiments are useful in mimicking natural conditions, but are not always feasible when investigating
disease. Laboratory and mesocosm experiments have been used successfully to examine a variety of
ecological processes [209,210], including various aspects of amphibian population declines [214] and
amphibian–pathogen dynamics (Table 1).

Studies of the three pathogens we focused on show that (1) host susceptibility varies with such
factors as species, host age, life history stage, population and various ecological conditions including
biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of
contaminants); (2) host susceptibility also depends upon the strain of the pathogen, to which they are
exposed. The number of experimental studies of the three pathogens conducted on hosts at different
life stages varied (Figure 4). Experimental studies and host survival showed clear differences with
host life stage (Figures 5 and 6). Moreover, the dose of pathogen administered during susceptibility
experiments is also important in interpreting results (Figure 7).

The issues we discussed in this paper illustrate some of the difficulties of standardizing
experimental methods and interpreting and comparing results from studies that use different methods.
As a baseline for standardization of experiments and to help interpret and compare the results of
different experimental studies we recommend several protocols: (1) Collecting newly laid eggs and
rearing them from larva through metamorphosis for experimentation lowers the likelihood that
animals used in experiments were exposed to pathogens in the field; (2) the developmental stage,
age, snout-vent length and mass of experimental animals should be reported; (3) abiotic conditions
(e.g., temperature, humidity) during experimentation in the laboratory or field (mesocosm) should be
recorded; (4) the duration of the study should be reported; (5) in susceptibility experiments, the method
of exposure of hosts to the pathogen should be detailed. Important information would include dose
parameters such as units used (e.g., #zoospores per unit volume); (6) explanation of the procedures
used to quantify pathogen load should be reported in detail (e.g., qPCR); (7) the strain and if possible
the origin of the strain of pathogen should be reported. Moreover, the age of the strain should be
reported if possible because strain virulence may change while in culture; (8) treatments should be
described fully and the number of individuals exposed to each treatment, including controls, should
be reported. Many but not all studies include the parameters we listed above. Moreover, our list was
not an exhaustive one but we feel that experiments reporting those parameters would aid researchers
in interpreting and comparing results of different experimental studies.

We suggest future studies examine differences in susceptibility at the species and population
levels as well as those that investigate strain variability, using controlled experiments. Controlled
experimental studies examining differences in susceptibility to pathogens can aid in our understanding
of the dynamics of epizootic outbreaks. Standardizing experimental methods is an essential component
of investigating the role of pathogens in amphibian population declines. Moreover, studies that focus
on a single cause contributing to amphibian population declines may underestimate the roles of
multiple factors working simultaneously to cause both direct and indirect effects. Developing a
mechanistic understanding of how biotic and abiotic factors can drive disease dynamics will allow us
to better predict outbreaks and better manage and alleviate consequences associated with emerging
infectious diseases [215].
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Table 1. An overview of the effects of Bd (a), Bsal (b), and Rv (c) on amphibian species based on experimental studies. Publications were compiled using the search
strings “Batrachochytrium dendrobatidis and amphibians”, “ranavirus and amphibians” and “Batrachochytrium salamandrivorans and amphibians” in the Web of Science
database from which duplicates and articles that were unrelated were removed. If one publication examined multiple species or host life stages, each species and life
stage was reported separately. We have included each species International Union for Conservation of Nature (IUCN) Red List Status (http://www.iucnredlist.org),
a widely recognized mechanism for assessing conservation status. Species of Least Concern (LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN),
and Critically Endangered (CE). na = not available. Reduced survival means mortality of hosts exposed to a pathogen was significantly higher than hosts in controls
that were not exposed to a pathogen. * animals were not reared from eggs. ** animals were not reared from eggs but were verified as Bd or Rv negative before the start
of the experiment. *** collection information unavailable.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

Agalychnis callidryas LC JEL 423 5 × 105 zoospores na Increased expression of genes of proteolitic
enzymes [216]

Alytes muletensis VU UKTvB, TF5al 23,000 zoospores over two weeks Through
metamorphosis Strain differences in infection [93]

Alytes obstetricans LC na na Through
metamorphosis Population differences in survival [217] **

LC na Dose reported in the field Larvae different cohorts Mitigation of Bd with fungicide was transient
not able to prevent spread of Bd [218]

Ambystoma californiense VU JEL 270 1000 and 100,000 zoospores Juveniles No significant differences in survival or mass [219] **

Ambystoma laterale LC JEL 423, JEL 404 105–106 zoosporangia Juveniles No significant differences in survival [86]

Ambystoma opacum LC 277 250,000 zoospores Larvae No infection detected, no significant
differences in survival [119]

Ambystoma tigrinum LC A-277, R-230 9,000,000 and 6,000,000 zoospores Juveniles No significant differences in survival [220]

Bd-GPL isolate 10,000 and 200,000 zoospores Juveniles No differences in zoospore outputs [221] **

Amietia delalandii LC
South Africa 1a and 1b, South

Africa 2 and 3, UK 1 and 2,
Spain and Sardinia

1 × 106 zoospores Adults (mucosome) Skin mucosomes inhibited Bd growth [222]

Anaxyrus americanus LC JEL 197 500,000 zoospores Juveniles Age dependent effect of Bd susceptibility [116]

JEL 423, JEL 404 106–107 zoospores and
105–106 zoosporangia

Larvae Reduced survival [86]

JEL 213 2.10 × 106 zoospores Juveniles Reduced survival [172]

JEL 660 1 × 105 zoospores Juveniles Elevated body temperatures [223]

Anaxyrus boreas NT JEL 215 12,600 zoospores Larvae Reduced survival [98]

JEL 274 170,000 zoospores Larvae Higher stress hormones and increased length [104]

http://www.iucnredlist.org
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

JEL 274 2 culture dishes inoculated in
batches with 20 tadpoles Larvae

Did not avoid infected conspecifics, increased
activity, no differences in

temperature selection
[108]

JEL 274 100,000, 50,000, or 1000 zoospores Larvae No significant differences in survival [80]

JEL 274 100,000, 50,000, or 1000 zoospores Juveniles No significant differences in survival [80]

JEL 215 2.08 × 107/plate Juveniles Reduced survival [144] *

JEL 275 106 zoospores/toadlet daily Juveniles
Mass dependent survival time, exposed

toadlets held bodies out of water as much as
possible

[99]

JEL 275 5.8 × 105 zp/mL Adults Reduced survival [152]

JEL 275 1.13 × 106 zoospores Adults
High infection intensity, loss in body weight,

mild hyperkeratosis and perturbations in
gene expression

[224]

JEL 425, JEL 630, JEL 646, JEL
627 1 × 105 zoospores Larvae Increased mortality dependent on isolate [91]

JEL 423 2.0 × 106 zoospores na Bufadienolides extracted inhibited Bd growth [225]

Anaxyrus boreas boreas LC JEL 275 100,000 zoospores Adults Electrolyte alterations, lymphocytic
infiltration [226] **

Anaxyrus fowleri LC na na Larvae Reduced foraging efficiency [119]

FMB 001 6,000,000 zoospores Larvae Negatively impacts growth [109]

USA isolate 284 6,000,000 zoospores Larvae Reduced foraging efficiency [120]

Anaxyrus terrestris LC JEL 274 2.6 × 105 zoospores Juveniles Reduced survival, decreased feeding [100]

Anaxyrus woodhousii LC Bd-GPL isolate 10,000 and 200,000 zoospores Juveniles No significant differences in zoospore outputs [221] **

Atelopus glyphus CR JEL 423 3 × 105 na

Genes with elevated expression in infected
individuals were enriched for GO terms,

including cell adhesion, immune response
and regulation of cell proliferation.

[216]

Atelopus varius CR JEL 410, JEL 412, JEL 413, and 3
contemporary isolates 50 × 102 Adults No differences in infection intensity or

survival by Bd strain [227]

Atelopus zeteki CR JEL 423 30,000 zoospores Adults Infection intensity and zoospore output were
positively correlated. [228]

JEL 423 30,000 zoospores Adults
Significant differences in expression of

numerous genes involved in innate and
inflamatory responses

[229] **
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

JEL 408 100 zoospores, 104, 106 Adults Dose and temperature dependent effects [78]

JEL 310 3000 zoospores Juveniles Probiotics use did not prevent or delay
mortality by Bd. [230]

JEL 423 3 × 103 zoospores na

Genes with increased expression were
enriched for GO terms, including response to

wounding, inflammatory response
and apoptosis

[216]

Batrachoseps attenuatus LC na 3 × 109 zoospore equivalents Adults
Cleared infection, wild caught infected

individuals experienced 100% mortality in the
laboratory

[84] **

Bufo bufo LC

IA042, IA043, 0711 (Pyrenees,
BdGPL), VAo2, VAo4, VAo5
(Valencia, BdGPL lineage),

CCB1, TF5a1 and TF1.1
(Mallorca, BdCAPE lineage)

3000–17,000 active zoospores Larvae Strain differences in mortality and infection
dynamics [85]

UK Bd UKTvB, Mallorca Bd
TF5a1, Pyrenneen Bd IA042 19,000 zoospores, 190 zoospores Larvae Reduced survival, differences in mass, strain

differences in virulence and infection [15]

Bd-GPL IA-42 160, 16,000 zoospores Juveniles Reduced survival, mass-dependent effects [196]

IA2004 043 30 to 70, 3000 to 15,000 zoospores Through
metamorphosis Dose-, size-, and age-dependent effects [79]

na 120–300 zoospores, 12,000–30,000
zoospores Juveniles

Warmer overwintering regime increases the
probability of infection. Proliferation of Bd in

the host was better in toadlets that
experienced a colder winter

[81]

Bufo marinus LC JEL 275 2.04 × 106 zoospores Adults Minimal hyperkeratosis, no differences in
survival neither in body weight [224]

Bufo quercicus (Anaxyrus
quercicus) LC SRS 812 60,000 zoospores Adults Learned behavioral resistance to Bd [83]

Craugastor fitzingeri LC JEL 423 5 × 105 zoospores na

Genes with increased expression were
enriched for GO terms, including response to

wounding, inflammatory response
and apoptosis.

[216]

Dendropsophus meridensis EN BdLEcat10CG-1 9 × 106 zoospores Juveniles Reduced survival [231] **

Dendrobates auratus LC na na Juveniles Reduced survival [36]
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

Dendrobates tinctorius LC na na Juveniles Reduced survival, skin lesions [36]

Desmognathus monticola LC JEL 197 1.068 × 107 zoospores Adults Reduced survival [232] **

Desmognathus orestes LC BD 197 1,000,000 zoospores Adults No clinical signs of infection [233] **

Eleutherodactylus coqui LC JEL 427 50,000 or 100,000 zoospores Juveniles Reduced survival, population differences [94] **

JEL 427 106 and 105 zp/mL in 10 mL Adults No significant differences in survival, cleared
or reduced infection [94]**

Hyla chrysoscelis LC na 7000 zoospores/mL Through
metamorphosis

No significant differences in survival, reduced
metamorphic body mass, delayed time to

metamorphosis
[234]

JEL 646, JEL 423, JEL 213, JEL
660, FMB 003, JEL 404 8 × 103 zoospores

Through
metamorphosis

No significant differences in survival, growth,
or time to metamorphosis [235]

na 7000 zp/mL Larvae
No significant differences in survival or larval

period length, reduced body mass at
metamorphosis

[118]

na 125,000 zoospores Larvae Reduced foraging efficiency [119]

na 6,000,000 zoospores Larvae Reduced foraging efficiency [120]

Hyla cinerea LC JEL 423, SRS810 76.7 × 106, 4.7 × 106 zoospores Juveniles and Adults
No clinical signs of infection. Infection did not

negitively affect body condition or growth
rate for either strain or lifestage

[89] **

Hyla versicolor LC JEL 274 2.6 × 105 Juveniles Reduced survival [100]

FMB 003 75,000 Larvae Reduced survival, age-dependent effects [167]

FMB 001 6,000,000 zoospores Larvae Negatively impacts growth [109]

Hypsiboas crepitans LC Bd1006 9,000,000 zoospores Juveniles Cleared infection [82]

Ichthyosaura alpestris LC na na Adults Reduced survival [236]

Lechriodus fletcheri LC EPS4 750,000 zoospores Sub-adults Significant differences in survival, increased
sloughing rates [237]

Leiopelma archeyi CR JEL 197 250,000 zoospores Adults Cleared infection [238] **

Limnodynastes peronii LC Gibbo River-Llesueuri-00-LB-1 20 × 106 zoospores Larvae and Juveniles Reduced survival, infection loads increased
over time [239]

EPS4 750,000 zoospores Adults Low mortality rates, increase in
sloughing rates [237]
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

Limnodynastes
tasmaniensis LC GibboRiver-Llesueuri-00-LB-1 5000 zoospores + 2 mL water Juveniles No significant differences in survival [240]

EPS4 750,000 zoospores Adults No significant differences in survival,
sloughing rate increased at lower Bd loads [237]

Lissotriton helveticus LC na ~2000 zoospores Adults

Decreased mass, no evidence of hastened
secondary sexual trait regression, exposure

associated with a 50% earlier initiation of the
terrestrial phase

[241] **

Lithobates catesbeianus LC JEL 274 48,000 zoospores Larvae Higher stress hormones and increased length [104]

JEL 215 8400 zoospores Larvae No significant differences in survival [98]

JEL 274, JEL 630 1.7 × 104 zoospores/mL in 15 mL Juveniles Strain differences in infection [80]

JEL 423 8 × 107 to 2 × 108 zoospores Juveniles Disruption of the epidermal cell
maturation cycle [35] **

JEL 423, JEL 404 106–107 zoospores and
105–106 zoosporangia

Juveniles No significant differences in survival [86]

Bd-GPL isolate 10,000 or 200,000 zoospores Juveniles Produces more infective zoospore stage than
other species tested [221] **

Crater Meadow isolate, Finley
Lake isolate 106 and 2 × 106 zoospores Juveniles

No significant differences in survival, low
infection prevalence, relatively low infection
loads and lack of clinical disease for Finley

Lake strain

[86] **

JEL 310 7 × 106 zoospores and
4.8 × 107 zoospores

Juveniles Manipulation of frogs microbiota did not
affect Bd infection intensity. [242]

Isolate from dead
Alytes obstetricans 150,000 zoospores Larvae No significant differences in survival [236]

Lithobates clamitans LC JEL 423, JEL 404 106–107 zoospores and
105–106 zoosporangia

Juveniles Strain differences in infection [86]

Lithobates pipiens LC JEL 423, JEL 404 106–107 zoospores and
105–106 zoosporangia

Juveniles No significant differences in survival [86]

JEL 423 3.98 × 106 zoospores Juveniles
Increased skin shedding, no significant

differences in survival or splenosomatic or
hepatosomatic

[171] **

JEL 424 3.98 × 106 zoospores Juveniles
indices, the densities and sizes of hepatic and

splenic melanomacrophage aggregates, the
density and size

[171] **
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

JEL 425 3.98 × 106 zoospores Juveniles
of hepaticgranulomas, proportions of

circulating leucocytes, the ratio of neutrophils
to lymphocytes,

[171] **

JEL 426 3.98 × 106 zoospores Juveniles or the ratio of leucocytes to erythrocytes [171] **

JEL 197 500,000 zoospores Juveniles No significant differences in survival
regardless of age [116]

JEL 423 1.69 × 107–7.43 × 108 zoospores Adults
Lower peak jumping velocity in infected

subjects, testes width significantly greater in
infected individuals

[243] **

Lithobates sphenocephalus LC na 2.88 × 106 zoospores Larvae No significant differences in survival, reduced
foraging efficiency [117]

na 400,000 zoospores Larvae

Low protein diets resulted in smaller and less
developed tadpoles and reduced immune
responses, high protein diets significantly

increased resistance to Bd

[244]

JEL 197 106 zoospores Juveniles

Increased pathogen skin burden within two
weeks of exposure, higher pathogen burden

in deceased frogs, decrease in pathogen loads
over time

[245]

Lithobates sylvaticus LC JEL 404, JEL 423 106–107 zoospores and
105–106 zoosporangia

Larvae Reduced survival, no differences in growth or
time to metamorphosis [86]

JEL 404, JEL 423 106–107 zoospores and
105–106 zoosporangia

Larvae Reduced survival [86]

JEL 197 104 zoospores Juveniles No significant differences in survival
regardless of age [116]

JEL 274 2.6 × 105 zoospores Juveniles Reduced survival [100]

JEL 274 1.55 × 105 Juveniles Population differences in survival [206]

JEL 423 1 × 107 to 2 × 107 zoospores Juveniles Disruption of the epidermal cell
maturation cycle [35] **

Lithobates yavapaiensis LC Arizona Bd strain PsTr2004 1 × 105 zoospores Juveniles MHC heterozygosity as a predictor of survival [246]

Litoria aurea VU Gibbo River-Llesueuri-00-LB-1 20 × 106 zoospores Larvae and Juveniles No significant differences in survival,
decrease in pathogen loads over time [239]

Litoria booroolongensis VU AbercrombieNP-L.
booroolongensis-09-LB-P7) 750,000 zp in 5 mL Juveniles No evidence that prior Bd infection increases

protective immunity [247]
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

Litoria caerulea LC GibboRiver-Llesueuri-00-LB-1 5000 zoospores + 2 mL water Juveniles Reduced survival [240]

Strain 98 1469/10, Strain 99
1385/12, Strain 00 545 50,000 zoospores Juveniles Differences in survival rates among

infected groups [34]

na na Adults
Decreased blood pH, low plasma osmolality

and reduced concentrations of sodium,
potassium, chloride and magnesium

[38]

EPS4 250,000 zoospores Adults Increased skin sloughing rate with increased
infection intensity [248] **

Gibboriver-Llesueuri-00-LB-1P50
and P10 (passages) 93 × 104/mL-1 Adults No significant differences in survival or mass [96]**

na 250,000 zoospores Adults Impaired immune response [249] **

na na Adults Impaired stress and immune response,
increased skin shedding [103] *

Paluma-Lseratta-2012RW-1 6 × 105 zoospores Juveniles Immunological profiles changed according to
acclimated regime [250]

EPS4 and Waste
point-Lverreauxii-2013-LB 1.25 × 106 zoospores Adults Low mortality rates, increase in

sloughing rates [237]

JEL 423 and Rio Maria isolate 1.5 × 106 zoospores Adults No differences in infection intensity or
survival by Bd strain [227]

JEL 423 and Rio Maria isolate indirect Adults No differences in infection intensity or
survival by Bd strain [227]

Litoria chloris LC GibboRiver-Llesueuri-00-LB-1 5000 zoospores + 2 mL water Juveniles Reduced survival [240]

GibboRiver-Llesueuri-00-LB-1 15,000 zoospores + 2 mL water Juveniles Temperature did not influence leukocyte
populations [240]

na 15,000 zoospores Juveniles Temperature dependent effects on survival [77] ***

Litoria infrafrenata LC na 250,000 zoospores Adults Reduction in white blood cells and serum
globulin concentrations [249] **

Litoria raniformis EN na 100,000 zoospores Adults
Compromised ability to osmoregulate and

rehydrate, no significant difference in
metabolic or breathing rates

[251] **

Litoria verreauxii alpina LC AbercrombieNP-
L.booroolongensis-09-LB-P7) 750,000 zoospores Adults No effect of MHC heterozygosity or allelic

divergence on survival [252]

AbercrombieR-
L.booroologensis-2009-LB1 and
WastePoint-L.v.alpina-2013-LB2

1 × 106 zoospores in 3 mL and
5 × 105 zoospores in 10 mL

Adults Oogenesis and spermatogenesis increased in
infected animals [253]
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference
Mixophyes fasciolatus LC GibboRiver-Llesueuri-00-LB-1 5000 zoospores + 2 mL water Juveniles Reduced survival [240]

No. 00/545 1000 zoospores Adults Lower temperatures enhanced pathogenicity [76] *

Osteopilus septentrionalis LC SRS 812 3 × 104 zp/mL in 2 mL Larvae The loss of keratin in the mouthparts
associated with a loss of Bd [254]

SRS 812 3 mL of 6 × 104 (after each
water change)

Larvae Reduced survival [170]

SRS 812 3 × 106 zp/mL Juveniles

Pathogen loads decreased over time;
increased lymphocyte proliferation with
increased exposures; previous exposure

increased chances of survival

[83]

Pelophylax esculentus LC TG 739 1.5–2 × 105 zoospores Adults
Reduction in skin peptide and microbiota

immune defenses caused less weight gain and
increased infection rates.

[255] **

Pelophylax lessonae LC TG 739 1.5–2 × 105 zoospores Adults
Reduction in skin peptide and microbiota

immune defenses caused less weight gain and
increased infection rates.

[255] **

Platyplectrum ornatum LC EPS4 750,000 zoospores Adults Significant differences in survival [237]

Plethodon cinereus LC JEL 660/JS OH-1 7 × 105 in 5 mL Adults Increased feeding activity [121] *

Plethodon glutinosus LC BD 197 1,000,000 zoospores Adults Clinical symptoms of infection [233] **

BD 197 10,000 or 100,000 zoospores Adults No significant differences in survival [233] **

Plethodon metcalfi LC JEL 197 1.068 × 107 zoospores Adults Reduced survival [232] **

Plethodon shermani JEL 197 1 × 107 zoospores Adults Decreased body mass, reduction in
locomotory activity [256]

Pseudacris crucifer LC JEL 423, JEL 404 106–107 zoospores and
105–106 zoosporangia

Adults No significant differences in survival [86]

Pseudacris feriarum LC JEL 274 2.6 × 105 zoospores Juveniles Reduced survival [100]

Pseudacris regilla LC JEL 215 12,600 zoospores Larvae No significant differences in survival [98]

JEL 626 27,800 zoospores Larvae Reduced survival and activity, delayed time
to metamorphosis [169]

JEL 215 2 culture dishes inoculated in
batches with 20 tadpoles Larvae No differences in temperature selection [108]
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Table 1. Cont.

a. Effects of Batrachochytrium dendrobatidis on amphibian hosts

Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

JEL 216 6.18 × 106/mL Larvae No significant differences in activity or
refuge use [115]

JEL 274 100,000, 50,000, or 1000 zoospores Larvae No significant differences in survival,
dose-dependent infection loads [80]

JEL 274 100,000, 50,000, or 1000 zoospores Juveniles Reduced survival, dose-dependent infection
loads [80]

JEL 215 2.08 × 107 zoospores Juveniles No significant differences in survival [144] *

JEL 274 50,000 zoospores Juveniles Reduced survival, Infection load increased
over time, lower lymphocyte levels [257]

JEL 274 2.6 × 107 and 1.1 × 106

zoospores/L
Through

metamorphosis Dose-dependent effects [74]

JEL 425, JEL 630, JEL 646 1 × 105 zoospores Larvae No significant differences in survival [91]

Pseudacris triseriata LC 27-mile lake isolate, Lost lake
isolate 8 × 104 zoospores na “frogs” Strain differences in infection [88]

LC Bd-GPL isolate 10,000 and 200,000 zoospores Juveniles No significant differences in zoospore outputs [221]

Pseudophryne corroboree CR AbercrombieR-
L.booroologensis-2009-LB1 1 × 106 zoospores in 3 mL Adults Oogenesis and spermatogenesis increased in

infected animals [253]

Pyxicephalus adspersus LC
South Africa 1a and 1b, South

Africa 2 and 3, UK 1 and 2,
Spain and Sardinia

1 × 106 zoospores Adults (mucosome) Skin mucosomes inhibited Bd growth [222]

Rana aurora LC JEL 215 2 culture dishes inoculated in
batches with 20 tadpoles Larvae No differences in temperature selection [108]

na 2 × 105 zp added every other day
for 8 days

Larvae High temperature variability in the presence
of Bd had decreased growth [149]

JEL 216 6.18 × 106/mL Larvae No significant differences in activity or
refuge use [115]

Rana blairi/Rana
sphenocephala (Lithobates

blairi/Lithobates
sphenocephala)

na na 7000 zp/mL Larvae No significant differences in survival, reduced
metamorphic body mass [118]

Rana boylii NT LJR 119 9.4 × 106 zoospores in 50 mL Juveniles No significant differences in survival, reduced
growth, increased skin peptide concentrations [165] *

A-227, R-230 1,275,000; 127,500 zoospores Juveniles No significant differences in survival [220]
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Species IUCN status Bd Strain Dose (Total zoospores) Life Stage Effect on host Reference

Rana cascadae LC JEL 215 12,600 zoospores Larvae
No significant differences in survival,

increased incidence of mouthpart
abnormalities

[98]

JEL 274 48,000 zoospores Larvae Higher stress hormones and increased length
and mass [104]

JEL 274 50,000 zoospores Larvae

No significant differences in mortality,
Infection load decreased over time, stronger
bacterial killing response over time, elevated

neutrophil levels

[257]

JEL 274 4 culture dishes inoculated in
batches with 90 tadpoles Larvae Non-infected individuals were observed more

frequently on Bd+ side of test chamber [108]

JEL 216 6.18 × 106/mL Larvae No significant differences in activity or
refuge use [115]

JEL 274 100,000, 50,000, or 1000 zoospores Larvae No significant differences in survival [80]

JEL 274 100,000, 50,000, or 1000 zoospores Juveniles Reduced survival [80]

JEL 215 2 culture dishes inoculated in
batches with 20 tadpoles Juveniles No differences in temperature selection [108]

JEL 274 8.5 × 104 zp Juveniles Lower stress hormone levels [104]

Section line lake and Carter
Meadow 2.2 × 105 zoospores Juveniles

Strain differences in mortality and infection
dynamic, no differences in survivorship

between populations BUT Bd prevalence and
infection intensity differed between

populations

[92]

JEL 215 2.08 × 107 zoospores Juveniles Reduced survival [144] *

JEL 425, JEL 630, JEL 646 1 × 105 zoospores Larvae No significant differences in survival [91]

Rana draytonii VU JEL 270 1000 and 100,000 zoospores Juveniles No significant differences in survival or mass [219] **

Rana muscosa EN JEL 217 3.6 × 109 zoospores Larvae Infected but appear healthy, loss of mouth
pigmentation [208] **

JEL 217 na Larvae Transmitted infection to each other and to
post-metamorphic individuals [208] **

LJR089 1 × 107 zoospores Larvae

Proportion of hosts that became infected
increased with the number of previously

infected R. muscosa tadpoles to which they
were exposed

[73]

na >100,000 in 1 mL Adults Disruption of skin integrity, ion imbalance [258]
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LJR089 1 × 107 zoospores Juveniles Temperature dependent effects on survival,
increased skin shedding [75]

Rana Once (Lithobates
Onca) EN CJB7 from Rana muscosa and

SLL from Rana cascadae 3 × 106 Juveniles No significant differences in survival, cleared
infection [259]

Rana pipiens (Lithobates
pipiens) LC na 2,800,000 zoospores Larvae Reduced activity [72]

JEL 275 104 zoospores Juveniles Reduced survival [260] **

JEL 274 2.6 × 105 zoospores Juveniles Reduced survival [115]

Rana sierrae EN TST75,CJB4, CJB5, CJB7 200,000 zoospores Juveniles Altered microbiome [261] **

Rana temporaria LC BdGPL IA-42 160 and 16,000 zoospores Juveniles
No significant differences in survival, high

dose resulted in less weight gain or
weight loss

[196]

Isolate IA 042 100,000 zoospores Juveniles Significant transcriptional response to Bd [262]

Rana yavapaiensis
(Lithobates yavapainensis) LC A-277, R-230 8.5 × 103 zoopores/mL Juveniles No significant differences in survival [220]

Silurana tropicalis (Xenopus
tropicalis) LC IA042 106 zoospores Adults Temperature dependent effects on immune

response [263] **

na na Adults Altered gene expression to physiological and
immunological genes [264] **

Xenopus laevis LC JEL 197 and JEL 275 na Adults Impaired lymphocyte proliferation and
induced splenocyte apoptosis [265]

JEL 197 and JEL 275 106 zoospores Adults
Peptide-depleted frogs became more

susceptible to Bd infection with higher
burdens and weight loss

[266] **

JEL 197 107 zoospores Adults Inhibition of local lymphocyte responses in
host to promote infection [267]

b. Effects of Batrachochytrium salamandrivorans on amphibian hosts

Species IUCN Status Bsal Strain Bsal Dose (Total zoospores) Life Stage Effect on Host Reference

Alytes obstetricans LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

AMFP13/1 5000 in 1 mL Adults No significant effect [18]

AMFP13/1, AMFP14/1,
AMFP14/2, AMFP15/1 105 Juvenile No signs of disease but able to transmit

infection after 14 days [18]

Ambystoma maculatum LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]
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Species IUCN Status Bsal Strain Bsal Dose (Total zoospores) Life Stage Effect on Host Reference

Ambystoma opacum LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42] **

Bombina variegata LC AMFP13/1 5000 in 1 mL Adults No infection or disease detected [42]

Cynops pyrrhogaster LC AMFP13/1 5000 in 1 mL <1 year Susceptible to infection and disease [42]

Discoglossus scovazzi LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

Epidalea calamita LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

Euproctus platycephalus EN AMFP13/1 5000 in 1 mL Adults Reduced survival, confirmed invasion of
the skin [42]

Gyrinophilus porphyriticus LC AMFP13/1 5000 in 1 mL Adults No infection or disease detected [42]

Hyla arborea LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

Hynobius retardatus LC AMFP13/1 5000 in 1 mL Adults No infection or disease detected [42]

Hypselotriton cyanurus LC AMFP13/1 5000 in 1 mL Adults Susceptible to infection and disease [42] **

Ichthyosaura alpestris LC AMFP13/1 5000 in 1 mL <1 year Reduced survival, confirmed invasion of
the skin [42]

AMFP13/1 104, 103, 102, 10 Juvenile High doses resulted in mortality, previous
infection offered no protection on reinfection [268]

Lissotriton helveticus LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

Lissotriton italicus LC AMFP13/1 5000 in 1 mL <1 year Reduced survival [42]

Lithobates catesbeianus LC AMFP13/1 5000 in 1 mL Adults No infection or disease detected [42]

Neurergus crocatus VU AMFP13/1 5000 in 1 mL Adults Reduced survival, confirmed invasion of
the skin [42]

Notophthalmus viridescens LC AMFP13/1 5000 in 1 mL Adults Reduced survival, confirmed invasion of
the skin [42]**

Pachyhynobius
shangchengensis VU AMFP13/1 5000 in 1 mL Adults No infection or disease detected [42]

Paramesotriton deloustali VU AMFP13/1 5000 in 1 mL Adults Susceptible to infection and disease [42]

Pelobates fascus LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

Plethodon glutinosus LC AMFP13/1 5000 in 1 mL Adults Confirmed infection of the skin, no
disease detected [42] **

Pleurodeles waltl NT AMFP13/1 5000 in 1 mL <1 year Reduced survival, confirmed invasion of
the skin [42]
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Table 1. Cont.

b. Effects of Batrachochytrium salamandrivorans on amphibian hosts

Species IUCN Status Bsal Strain Bsal Dose (Total zoospores) Life Stage Effect on Host Reference

Rana temporaria LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

Salamandra salamandra LC AMFP13/1 5000 in 1 mL Adults
Reduced survival, ataxia.

Cohousing effectively transmits
infection

[18]

AMFP13/1 5000 in 1 mL Adults Warmer temperatures can clear
infection [269]

AMFP13/1 105 in 1 mL Adults

Topical treatments can reduce
fungal loads and in combination

with warmer temperature can clear
infection

[269]

AMFP13/1 5000 in 1 mL <1 year Reduced survival, confirmed
invasion of the skin [42]

AMFP13/1, AMFP14/1,
AMFP14/2, AMFP15/1 100 spores (low), 104 (high) Juvenile Mortality was delayed in low dose

treatment [268]

na 2.6 × 104, 1.3 × 104 na Mortality was delayed in low temp
treatment [268]

AMFP13/1 103 na Reinfection did not change disease
dynamics [268]

Salamandrella keyserlingii LC AMFP13/1 5000 in 1 mL Adults Confirmed infection but no effects
of disease or on survival [42]

Salamandrina perspicillata) LC AMFP13/1 5000 in 1 mL <1 year Reduced survival [42]

Silurana tropicalis LC AMFP13/1 5000 in 1 mL <1 year No infection or disease detected [42]

Siren intermedia LC AMFP13/1 5000 in 1 mL Adults Confirmed infection but no effects
of disease or on survival [42]

Speleomantes strinatii NT AMFP13/1 5000 in 1 mL Adults Reduced survival [42] **

Taricha granulosa LC AMFP13/1 5000 in 1 mL <1 year Reduced survival [42]

Triturus cristatus LC AMFP13/1 5000 in 1 mL <1 year Reduced survival, confirmed
invasion of the skin [42]

Tylototriton wenxianensis VU AMFP13/1 5000 in 1 mL <1 year Reduced survival [42]

Typhlonectes
compressicauda LC AMFP13/1 5000 in 1 mL Adults No infection or disease detected [42]
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Table 1. Cont.

c. Effects of ranavirus on amphibian hosts

Species IUCN Status Rv Strain Dose Type of Exposure Life-Stage Effect on Host Reference

Ambystoma
californiense VU ATV 200 uL of inoculum w/1000 virions of

ATV in APBS solution Injection Adults Reduced survival [270] **

Ambystoma gracile LC ATV na Water bath Larvae Reduced survival [128] *

Ambystoma maculatum LC FV3, FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival, strain
differences in infection [132]

Ambystoma mavortium na ATV 1 × 103.3 and 7.1 × 103 TCID50/mL
(1.4 million virions per animal)

Water bath Larvae Population differences in infection [133]

Ambystoma opacum LC FV3, FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival, strain
differences in infection [132]

Ambystoma talpoideum LC FV3, FV3-like isolate 103 PFU/mL Water bath Larvae No difference in survival, no
difference in infection [132]

Ambystoma tigrinum LC ATV (ATV-DO211) 102, 102.5, 103, 103.5, 104, 105 PFU from
original plaque assay of 4.5 × 107 Water bath Larvae Dose dependent infection and

survival rates [70]

ATV 2 × 106 from 200 mL of 104 PFU/mL in
aged tap water

Water bath Larvae No differences between
transmission rates [56]

ATV 2 × 107 of ATV for a final concentration
of 6.67 × 104 PFU/mL

Water bath with
pond sediment Larvae

No infection when exposed to
virus in dried substrate, but when

substrate was kept moist they
became infected and experienced

reduced survival

[56]

ATV 500 PFU in 200 uL Injection Larvae 1s ventral surface to ventral
surface contact results in infection [56]

ATV 4 × 106 PFU from 400 mL of 104

PFU/mL in aged tap water
Water bath Larvae Infection rate increases with time

and increased SVL [56]

ATV 103 PFU/mL, 104 PFU/mL Water bath Larvae

Temperature influences infectivity,
survival, and time to death.

Sublethal infections result in viral
carrier status.

[130]

ATV 102, 102.5, 103, 103.5, 104, 105 PFU from
original plaque assay of 4.5 × 107 Water bath Larvae Dose and developmental stage

dependent infection rates [70]
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Table 1. Cont.

c. Effects of ranavirus on amphibian hosts

Species IUCN Status Rv Strain Dose Type of Exposure Life-Stage Effect on Host Reference

FV3, FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

ATV 103 PFU/mL Water bath Larvae No differences in survival rates
between larvae and juveniles [56]

ATV 103 PFU/mL Water bath Juveniles Reduced survival [56]

Ambystoma mavortum na ATV 200 uL of inoculum w/1000 virions of
ATV in APBS solution Injection Adults Reduced survival [270] *

Ambystoma tigrinum
nebulosum na ATV 200 uL of inoculum w/1000 virions of

ATV in APBS solution Injection Adults Reduced survival [270]

Ambystoma tigrinum
stebbinsi na ATV 200 uL of inoculum w/1000 virions of

ATV in APBS solution Injection Adults Reduced survival [270] *

Anaxyrus americanus LC FV3-like isolate 103 PFU/mL Water bath Embryo through
metamorphosis

Developmental stage dependent
infection and survival rates [136]

FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Anaxyrus boreas LC FV3-like isolate 103 PFU Water bath Larvae 100% mortality [55]

FV3-like isolate 103 PFU Water bath Juveniles 100% mortality [271]

Bufo bufo LC RUK 11, RUK 13,
BUK 2, BUK 3

106 pfu, 104 pfu [all exposures
standardized to 30 mL]

Water bath Larvae
Reduced survival, dose dependent

infection and survival, strain
differences in infection

[272]

Cophixalus ornatus LC BIV 103 TCID50/mL
Water bath,

Injection, contact Adults Reduced survival [273] *

Gastrophryne
carolinensis LC FV3 and FV3-like

isolate 106 PFUs in 10 uL of Eagle’s MEM
oral dose, Water

bath Larvae No differences in survival and no
strain differences in viral load [126]

Hyla chrysoscelis LC FV3-like isolate 103 PFU/mL Water bath Embryo through
metamorphosis Reduced survival [136]

FV3 and FV3-like
isolate 106 PFUs in 10 uL of Eagle’s MEM

Oral dose, Water
bath Larvae

Reduced survival, exposure type
dependent effects on survival and

infection
[126]

FV3, FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

FV3, FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival [132]
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Table 1. Cont.

c. Effects of ranavirus on amphibian hosts

Species IUCN Status Rv Strain Dose Type of Exposure Life-Stage Effect on Host Reference

FV-3 103 PFU/mL Water bath Larvae

Transmission can occur between
vertebrate classes. Amphibian

larvae more susceptible to
ranavirus than other vertebrate

classes.

[62]

Limnodynastes
terraereginae LC BIV

100, 101, 102.5, and 104 TCID50/mL
(bath); 0.1 mL of 103 TCID50/mL

(injection)

Water bath,
Injection Larvae Reduced survival, renal, hepatic,

splenic, and pulmonary necrosis [274] *

BIV
100, 101, 102.5, and 104 TCID50/mL
(bath); 0.1 mL of 103 TCID50/mL

(injection)

Water bath,
Injection Juveniles Reduced survival, renal, hepatic,

splenic, and pulmonary necrosis [274] *

Lithobates catesbeianus LC ATV Tadpoles were fed infected salamander feeding Larvae Reduced survival [128] *

FV3, FV3-like isolate 103 PFU/mL Water bath Larvae No differences in survival [132]

ATV 200 uL ATV/EPC which had 4 × 105

PFU/mL for adults injection.
Injection Adults Reduced survival [128] *

Lithobates clamitans LC FV3-like isolate 103 PFU/mL Water bath Embryo through
metamorphosis Reduced survival [136]

Lithobates palustris LC FV3 and FV3-like
isolate 106 PFUs in 10 uL of Eagle’s MEM

oral dose, Water
bath Larvae

Reduced survival, exposure type
dependent effects on survival and

infection
[126]

Lithobates pipiens LC FV3-like isolate 103 PFU/mL Water bath Embryo through
metamorphosis Reduced survival [136]

FV3 strains (SSME,
wt-FV3, aza-C) 50 mL of water with 10,000 PFU/mL Water bath Larvae Strain dependent effects on

survival [275] *

FV3 isolate (wt-FV3),
azacR, SsMeV 50 mL of water with 10,000 PFU/mL Water bath Larvae Infection dependent on

temperature and strain [129]

ATV 100 uL of ATV/EPC which had 4 × 105

PFU/mL in EPC cells
Injection Adults Reduced survival [128] *

Lithobates sevosus CR FV3-like isolate 400 mL of water with 103 PFU/mL
Water bath,

Injection, oral dose Adults Reduced survival, exposure type
dependent effects on survival [276]

FV3-like isolate 103 PFU Water bath Eggs Reduced survival [271]

FV3-like isolate 103 PFU Water bath Hatchling 100% mortality [271]
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Table 1. Cont.

c. Effects of ranavirus on amphibian hosts

Species IUCN Status Rv Strain Dose Type of Exposure Life-Stage Effect on Host Reference

FV3-like isolate 103 PFU Water bath Larvae 100% mortality [271]

FV3-like isolate 103 PFU Water bath Juveniles 100% mortality [271]

FV3-like isolate 103 PFU Water bath Juveniles Reduced survival [271]

FV3-like isolate 103 PFU Water bath Adults Reduced survival [271]

Lithobates sylvaticus LC FV3-like isolate 103 PFU/mL Water bath Embryo through
metamorphosis Reduced survival [136]

FV3 isolate (wt-FV3),
azacR, SsMeV 50 mL of water with 10,000 PFU/mL Water bath Larvae Infection dependent on

temperature and strain [129]

na na
contact and feeding

on infected
individuals

Larvae Reduced survival [57] *

na na
Exposure to

contaminated
sediment and Water

Larvae Reduced survival [57]

Litoria caerulea LC BIV 103 TCID50/mL; 104.5 TCID50/mL
Water bath,

Injection Juvenile Reduced survival, exposure type
dependent effects on survival [273] *

BIV 103 TCID50/mL
Water bath,

Injection, contact Adults No differences in survival [273] *

Litoria inermis LC BIV 103 TCID50/mL Injection Adults Tested negative for infection [273] *

Litoria latopalmata LC BIV 103 TCID50/mL Injection Larvae Reduced survival, renal, hepatic,
splenic, and pulmonary necroses [274] *

LC BIV 103 TCID50 mL Injection Juveniles Reduced survival, renal, hepatic,
splenic, and pulmonary necrosis [274] *

Litoria rubella LC BIV 104.5 TCID50/mL Injection Adults No differences in survival [273] *

Notophtalmus viridescens LC ATV na contaminated Water Larvae Reduced survival [128] *

LC FV3, FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Pseudacris brachyphona LC FV3, FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Pseudacris feriarum LC FV3-like isolate 103 PFU/mL Water bath Embryo through
metamorphosis Reduced survival [136]
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Table 1. Cont.

c. Effects of ranavirus on amphibian hosts

Species IUCN Status Rv Strain Dose Type of Exposure Life-Stage Effect on Host Reference

FV3, FV3-like
isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Pseudacris triseriata LC FV3, FV3-like
isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Rana capito (Lithobates
capito) NT FV3, FV3-like

isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Rana clamitans (Lithobates
clamitans) LC FV3, FV3-like

isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Rana latastei VU FV3
2.25 × 106 pfu/mL (aliquots of 10 mL)

from 70 mL of stock solution with 5.5 × 108

PFU/mL added to aged tap water
Larvae Reduced survival [124]

FV3 4.5 × 106 pfu/mL (aliquots of 10 mL),
4.5 × 105, 4.5 × 104, 4.5 × 103, 4.5 × 102 Larvae Dose dependent survival and survival

rates [124]

FV3 na, but feeder tadpoles infected with
4.5 × 106 PFU/mL

Consuming infected
carcasses Larvae Exposure type dependent survival rate [124]

FV3

4.5 × 104 PFU/mL, 4.5 × 106 PFU/mL
(this was achieved by adding 2.796 × 108

PFU of FV3 to 615 mL of aged water, low
exposure was a 1:100 dilution of this.)

Larvae Dose dependent survival, effect of
genetic diversity on survival [207]

Rana palustris (Lithobates
palustris) LC FV3-like isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Rana pipiens (Lithobates
palustris) LC FV3, FV3-like

isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Rana sphenocephala
(Lithobates Sphenocephala) LC FV3, FV3-like

isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Rana sylvatica (Lithobates
sylvatica) LC FV3, FV3-like

isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

FV3-like isolates
(from wood frog

and spotted
salamander)

10 fold dilutions from 2.36 × 101 through
2.36 × 105 PFU/mL for wood frog isolate

and 2.51 × 101 through 2.51 × 105

PFU/mL for spotted salamander isolate)

Water bath Larvae Dose dependent survival rates, no
strain differences in infection [105]

FV3-like isolate 2.36 × 103 PFU/mL Water bath Larvae Higher stress hormone levels [105]

FV3 67; 670; and 6,700 PFU/mL Water bath Larvae Horizontal transmission the most
likely means of FV3 transmission [60]
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Table 1. Cont.

c. Effects of ranavirus on amphibian hosts

Species IUCN Status Rv Strain Dose Type of Exposure Life-Stage Effect on Host Reference

Rana temporaria LC RUK 11, RUK 13,
BUK 2, BUK 3

106 pfu, 104 pfu [all exposures
standardized to 30 mL]

Water bath Larvae Dose and strain dependent effects on
survival [272]

BIV, DFV, ECV,
EHNV, FV3, GV6,

PPIV, REV, and
SERV

104 TCID50/mL Water bath Larvae Strain and temperature dependent
effects on survival [277]

BIV, DFV, ECV,
EHNV, FV3, GV6,

PPIV, REV, and
SERV

104 TCID50/mL Water bath Juveniles Strain dependent effects on survival [277]

RUK11 and RUK13
0.25 mL intraperitoneally, 0.25

subcutaneously both from 106·2 and 105·6

TCID 50/mL stock
Injection Adults Reduced survival [125] **

Scaphiopus holbrookii LC FV3-like isolate 103 PFU/mL Water bath Embryo through
metamorphosis Reduced survival [136]

FV3, FV3-like
isolate 103 PFU/mL Water bath Larvae Reduced survival [132]

Taudactylus acutirostris CR BIV 103 TCID50/mL Water bath Adults Reduced survival [273] *

Xenopus laevis LC FV3 1 × 104 PFU in 10 uL Injection Larvae Developmental stage differences in
immune response to FV3 [278]

FV3 5 × 106 PFU in 100 uL Injection Adults Developmental stage differences in
immune response to FV3 [278]

FV3
1 × 104 PFU in 10uL for injection; 10 uL of
1 × 105 PFU for oral ingestion; and 2 mL of

5 × 106 PFU for water bath

Water bath,
Injection, oral

ingestion
Larvae Developmental stage dependent

immune function and infection rates [134]

FV3 0.1 mL volume of 1 × 106 PFU Injection Juveniles Developmental stage dependent
immune function and infection rates [134]

FV3 1 × 106 to 5 × 106 PFU in 300 uL Injection Adults Host cell differences in viral clearance [279]

FV3 1 × 106 PFU na Adults Immunocompromised adults can
transmit infection within 3 h [134]

FV3 106 PFU Injection Larvae & Adults Developmental stage differences in
immune response to FV3 [280]
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